

Cambridge International AS & A Level

MATHEMATICS (9709) P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Appendix A

Answers

$1.\ 9709_s20_MS_21\ Q:\ 2$

Substitute $x = 2$ and equate to zero	.0,	М1
Substitute $x = -\frac{1}{2}$ and equate to zero	10	М1
Obtain $4a+b+66=0$ and $\frac{1}{4}a+b-\frac{21}{4}=0$ or equivalents	10	A1
Solve a relevant pair of linear simultaneous equations (Dependent on at least one M mark)		DM1
Obtain $a = -19$, $b = 10$		A1
		5

2. 9709_s20_MS_21 Q: 4

(a)	Draw two V-shaped graphs with one vertex on negative x-axis and one vertex on positive x-axis	M1
	Draw correct graphs related correctly to each other	A1
	State correct coordinates $-\frac{2}{3}a$, $2a$, $\frac{4}{3}a$, $4a$	A1
		3
(b)	Solve linear equation with signs of $3x$ different or solve non-modulus equation $(3x+2a)^2 = (3x-4a)^2$	M1
	Obtain $x = \frac{1}{3}a$	A1
	Obtain $y = 3a$	A1
		3
(c)	State $x < \frac{1}{3}a$ (FT from part (b))	B1FT
		1

 $3.\ 9709_s20_MS_22\ Q{:}\ 5$

(a)	Draw V-shaped graph with vertex on positive x-axis	B1
	Draw (more or less) correct graph of $y = 3x + 5$	B1
		2
(b)	State equation $3x + 5 = -(2x - 3)$ or corresponding inequality	B1
	Attempt solution of linear equation / inequality where signs of $3x$ and $2x$ are different	M1
	State answer $x < -\frac{2}{5}$	A1
	Alternative method for question 5(b)	
	Square both sides of equation / inequality and attempt solution of 3-term quadratic equation / inequality	M1
	Obtain (eventually) only $-\frac{2}{5}$	A1
	State answer $x < -\frac{2}{5}$	A1
		3

 $4.\ 9709_w20_MS_21\ Q:\ 1$

Answer	Mark	Partial Marks
Use correct logarithm property to simplify left-hand side	M1	Or equivalent method
Use correct process to obtain equation without logarithms	M1	
Obtain $\frac{2x+1}{x-3} = e^2$	A1	OE
Obtain $x = \frac{3e^2 + 1}{e^2 - 2}$	A1	OE
	4	

5. 9709_w20_MS_21 Q: 2

	Answer	Mark	Partial Marks
	Substitute $x=-2$ and equate to zero	*M1	
	Substitute $x = 2$ and equate to 72	*M1	
•	Obtain $4a-2b+8=0$ and $4a+2b-48=0$ or equivalents	A1	
	Solve a pair of relevant linear simultaneous equations	DM1	Dependent at least one M mark
	Obtain $a = 5$, $b = 14$	A1	
		5	

 $6.\ 9709_w20_MS_21\ Q:\ 4$

	Answer	Mark	Partial Marks
(a)	State or imply non-modulus equation $(2x-5)^2 = (x+6)^2$ or pair of linear equations	B1	
	Attempt solution of 3-term quadratic equation or of pair of linear equations	M1	
	Obtain $-\frac{1}{3}$ and 11	A1	
		3	
(b)	Apply logarithms and use power law for $2^{-y} = k$ where $k > 0$ from (a)	M1	
	Obtain -3.46	A1	AWRT
		2	

 $7.\ 9709_w20_MS_22\ Q\hbox{:}\ 3$

	Answer	Mark	Partial Marks
(a)	Draw V-shaped graph with vertex on positive x-axis	B1	
	Draw straight line graph correctly positioned with greater gradient	B1	
		2	
(b)	Solve linear equation with signs of $\frac{1}{2}x$ and $\frac{3}{2}x$ different	М1	
	or solve non-modulus equation $\left(\frac{1}{2}x-a\right)^2 = \left(\frac{3}{2}x-\frac{1}{2}a\right)^2$ to obtain	4	
	x =	A?	
	Obtain $x = \frac{3}{4}a$	A1	
	Obtain $y = \frac{5}{8}a$	A1	And no other point
		3	
(c)	State $x < \frac{3}{4}a$	B1 FT	Following <i>their</i> (single) x-coordinate from part (b)
		1	

8. 9709_m19_MS_22 Q: 2

Answer	Mark	Partial Marks
Solve non-modular equation $(2x+3)^2 = (2x-1)^2$ or linear equation with signs of $2x$ different	M1	
Obtain $x = -\frac{1}{2}$	A1	
Substitute negative value into expression and show correct evaluation of modulus at least once	M1	
Obtain $5-3=2$ with no errors seen	A1	
	4	

9. $9709 m19 MS_22$ Q: 4

	Answer	Mark	Partial Marks
(i)	Carry out division at least as far as $2x^2 + kx$	M1	
	Obtain quotient $2x^2 + 3x + 4$	A1	
	Confirm remainder is 5	A1	Answer given; necessary detail needed
		3	
(ii)	State or imply equation is $(2x+1)(2x^2+3x+4)=0$	B1	FT their quotient from part (i)
	Calculate discriminant of 3-term quadratic expression or equivalent	M1	
	Obtain –23 or equiv and conclude appropriately	A1	
		3	

10. 9709_s19_MS_21 Q: 2

	Answer	Mark	Partial Marks
(i)	State or imply non-modular inequality $(3x-5)^2 < (x+3)^2$ or corresponding equation or pair of different linear equations/inequalities	B1	SC: Allow B1 for $x < 4$ from only one linear inequality
	Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities	M1	For M1, must get as far as 2 critical values
	Obtain critical values $\frac{1}{2}$ and 4	A1	
	State answer $\frac{1}{2} < x < 4$ or equivalent	A1	If given as 2 separate statements, condone omission of 'and' or \cap but penalise inclusion of 'or' or \cup
		4	
(ii)	Attempt to find n (not necessarily an integer so far) from $3^{0.1n} = \text{ or } < \text{their}$ positive upper value from part (i) or $3^{0.1n+1} = \text{ or } < 3 \times \text{their}$ positive upper value from part (i)	M1	0/2 for trial and improvement
	Conclude 12	A1	
		2	

11. 9709_s19_MS_21 Q: 5

	Answer	Mark	Partial Marks
(i)	Substitute $x = 2$ and equate to zero	M1	Allow synthetic division for each—must result in an equation from each division
	Substitute $x = -1$ and equate to 27	M1	Allow unsimplified
	Obtain $4a + 2b = -24$ and $a - b = 48$ or equivalents	A1	Allow one error in each equation
	Solve a relevant pair of simultaneous linear equations	M1	Dependent at least one M mark
	Obtain $a = 12$, $b = -36$	A1	
		5	
(ii)	Divide by $x-2$ at least as far as the x term to obtain $5x^2 + (their \ a + 10)x$	M1	For synthetic division need to see 5 and <i>their</i> $a+10$ in the bottom line
	Obtain $5x^2 + 22x + 8$	A1	
	Obtain $(x-2)(5x+2)(x+4)$	A1	If solved using a calculator and then forming factors, must be correct for full marks
		3	

 $12.\ 9709_s19_MS_22\ Q{:}\ 1$

Answer	Mark	Partial Marks
Substitute -1 into $p(x)$ and equate to zero	M1	Allow algebraic long division or the use of an identity with the remainder, in terms of m and k , equated to zero
Obtain $-4 + (k+1) + m + 3k = 0$ or equivalent	A1	
Obtain $m = 3 - 4k$	A1	
	3	

 $13.\ 9709_s19_MS_22\ Q:\ 2$

	Answer	Mark	Partial Marks
(i)	State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair of linear equations	B1	
	Attempt solution of 3-term quadratic eqn or pair of linear equations	M1	
	Obtain $-\frac{1}{7}$, $\frac{7}{3}$	A1	SC B1 for $x = -\frac{1}{7}$ from one linear equation
		3	
(ii)	Attempt correct process to solve $e^{3y} = k$ where $k > 0$ from (i)	M1	
	Obtain 0.282 and no others	A1	
		2	

 $14.\ 9709_w19_MS_21\ Q:\ 1$

	Answer	Mark	Partial Marks
(i)	State or imply non-modular inequality $(2x-7)^2 < (2x-9)^2$ or corresponding equation or linear equation (with signs of $2x$ different)	M1	
	Obtain critical value 4	A1	
	State $x < 4$ only	A1	
		3	
(ii)	Attempt to find n from $\ln n = their$ critical value from part (i)	M1	
	Obtain or imply $n < e^4$ and hence 54	A1	
		2	

15. $9709_{\mathrm{w}19}_{\mathrm{MS}}_{\mathrm{21}}$ Q: 4

	Answer	Mark	Partial Marks
(i)	Substitute $x = 2$, equate to zero and attempt solution	M1	
	Obtain $a = 4$	A1	
		2	
(ii)	Divide by $x-2$ at least as far as the x term	M1	By inspection or use of identity
	Obtain $4x^2 + 12x + 9$	A1	
	Conclude $(x-2)(2x+3)^2$	A1	Each factor must be simplified to integer form
		3	
(iii)	Attempt correct process to solve $e^{\sqrt{y}} = k$ where $k > 0$	M1	For $y = (\ln k)^2$
	Obtain 0.48 and no others	A1	AWRT
		2	

16. 9709_w19_MS_22 Q: 1

Answer	Mark	Partial Marks
Divide at least as far as the x term in the quotient	M1	Allow use of $(x^2 + 2)(x^2 + ax + b) + cx + d$
Obtain at least $x^2 - 3x$	A1	O
Obtain $x^2 - 3x + 3$ and remainder 5	A1	
	3	

17. 9709_m18_MS_22 Q: 1

	Answer	Mark	Partial Marks
	EITHER: State or imply non-modular inequality $(5x+2)^2 > (4x+3)^2$ or corresponding equation or pair of linear equations	(B1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
	Obtain critical values $-\frac{5}{9}$ and 1	A1	And no others
	State answer $x < -\frac{5}{9}$, $x > 1$	A1)	
••	<i>OR</i> : Obtain critical value $x = 1$ from graph, inspection, equation	(B1	
	Obtain critical value $x = -\frac{5}{9}$ similarly	В2	
	State answer $x < -\frac{5}{9}$, $x > 1$	B1)	
		4	

 $18.9709 _{\mathrm{m}18} _{\mathrm{M}S} _{\mathrm{22}} \ \mathrm{Q:} \ 4$

Answer	Mark	Partial Marks
Substitute $x = -3$ and simplify	M1	
Obtain $-108 + 36 + 87 - 15 = 0$ or equivalent and conclude	A1	
	2	
Attempt either division by $x+3$ to reach at least partial quotient $4x^2 + kx$ or use of identity or inspection	M1	
Obtain quotient $4x^2 - 8x - 5$	A1	
Conclude $(x+3)(2x-5)(2x+1)$	A1	
	3	
Identify $2^u = \frac{5}{2}$	B1	Ignoring other values at this stage
Apply logarithms and use power law for $2^u = c$ where $c > 0$	М1	
Obtain $u = 1.32$	A1	And no other values
	3	
		(0)
Palpaca		
	Substitute $x=-3$ and simplify Obtain $-108+36+87-15=0$ or equivalent and conclude Attempt either division by $x+3$ to reach at least partial quotient $4x^2+kx$ or use of identity or inspection Obtain quotient $4x^2-8x-5$ Conclude $(x+3)(2x-5)(2x+1)$ Identify $2^u = \frac{5}{2}$ Apply logarithms and use power law for $2^u = c$ where $c > 0$ Obtain $u = 1.32$	Substitute $x=-3$ and simplify Obtain $-108+36+87-15=0$ or equivalent and conclude 2 Attempt either division by $x+3$ to reach at least partial quotient $4x^2+kx$ or use of identity or inspection Obtain quotient $4x^2-8x-5$ Conclude $(x+3)(2x-5)(2x+1)$ A1 Identify $2^u=\frac{5}{2}$ B1 Apply logarithms and use power law for $2^u=c$ where $c>0$ M1 Obtain $u=1.32$ A1 3

19. 9709_s18_MS_21 Q: 6

	Answer	Mark			Pa	rtial Ma	arks		
(i)	Substitute $x = -2$ and equate to zero	M1							
	Obtain $-8+4a-28+a+1=0$ or equivalent and hence $a=7$	A1							
	Attempt either division by $x+2$ and reach partial quotient	M1	Synt	thetic divi	sion:				
	$x^2 + kx$, where k is numeric or use of identity or inspection or synthetic division			-2	1	7	14	8	
	utvision					-2	-10	-8	
					1	5	4	0	
	Obtain quotient $x^2 + 5x + 4$ soi	A1							
	Conclude with $(x+1)(x+2)(x+4)$	A1							
		5							
(ii)	<u>Either</u>								
	State $(2x+1)(2x+2)(2x+4) = 3(x+1)(x+2)(x+4)$	M1	Following their complete factorised form						
	Obtain $x = -1$ and $x = -2$	A1	Calculator not permitted so necessary detail needed						
	Cancel common factors to obtain linear equation or factorise to find corresponding factor	M1			V)			
	Obtain $x = \frac{8}{5}$ or equivalent	A1							
	<u>Or</u>								
	State $(2x+1)(2x+2)(2x+4) = 3(x+1)(x+2)(x+4)$ or	M1				ed factoris			
	$(2x)^3 + 7(2x)^2 + 14(2x) + 8 = 3(x^3 + 7x^2 + 14x + 8)$		Must see $8x^3$ and $28x^2$ if using second statement without bracketed terms in $2x$ Must be equated to 0 for A1						
	Expand and simplify to obtain $5x^3 + 7x^2 - 14x - 16 = 0$	A1							
	Attempt complete factorisation of cubic with leading term $5x^3$ (may make	M1	Synt	thetic divi	sion:				
	use of synthetic division)			-2	5	7	-14	-16	\dashv
					-	-10	6	16	_
					5	-3	-8	0	
	Obtain $(x+1)(x+2)(5x-8) = 0$ and conclude $x = -1$, $x = -2$, $x = \frac{8}{5}$	A1	Calc	culator not	permitted	l so necess	ary detail r	eeded	
		4							

20. 9709_s18_MS_22 Q: 1

Answer	Mark	Partial Marks
Either		
State or imply non-modular inequality $(3x-2)^2 < (x+5)^2$ or corresponding equation or pair of linear equations	B1	
Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
Obtain critical values $-\frac{3}{4}$ and $\frac{7}{2}$	A1	
State answer $-\frac{3}{4} < x < \frac{7}{2}$	A1	
<u>Or</u>		
Obtain critical value $\frac{7}{2}$ from graph, inspection, equation	B1	
Obtain critical value $-\frac{3}{4}$ similarly	B2	
State answer $-\frac{3}{4} < x < \frac{7}{2}$	B1	
	4	.04

$21.\ 9709_s18_MS_22\ Q\hbox{:}\ 3$

	Answer	Mark	Partial Marks
(i)	Carry out division and reach at least partial quotient of form $x^2 + kx$	M1	
	Obtain quotient $x^2 - 2x + 2$	A1	
	Obtain remainder 1	A1	AG; necessary detail needed and all correct
		3	
(ii)	State equation as $(x^2 + 6)(x^2 - 2x + 2) = 0$	B1 FT	Following their 3-term quotient from part (i)
	Calculate discriminant of 3-term quadratic or equivalent	M1	
	Obtain -4 and state no root, also referring to no root from $x^2 + 6$ factor	A1	AG; necessary detail needed
	-0	3	

 $22.\ 9709_w18_MS_22\ Q:\ 1$

Answer	Mark	Partial Marks
Either		
State or imply non-modular inequality $(3x-5)^2 < 4x^2$ or corresponding equation or pair of linear equations	B1	SC: Common error $(3x-5)^2 < 2x^2$
Attempt solution of 3-term quadratic equation or solution of 2 linear equations	M1	
Obtain critical values 1 and 5	A1	Critical values $\frac{15 \pm 5\sqrt{2}}{7}$ or 3.15, 1.13 allow B1
State correct answer 1 < x < 5	A1	$\frac{15 - 5\sqrt{2}}{7} < x < \frac{15 + 5\sqrt{2}}{7} \text{ or } 1.13 < x < 3.15 \text{ B1}$ Max 2/4 Allow M1 for $(7x \pm 5)(x \pm 5)$
<u>Or</u>		
Obtain $x=5$ by solving linear equation or inequality or from graphical method or inspection	B1	Allow B1 for 5 seen, maybe in an inequality
Obtain $x=1$ similarly	B2	Allow B2 for 1 seen, maybe in an inequality
State correct answer 1 < x < 5	B1	70
	4	4.0

 $23.\ 9709_m17_MS_22\ Q\hbox{:}\ 6$

	Answer	Mark	Partial Marks
(i)	Substitute $x = -2$ and equate to zero	M1	
	Substitute $x = 2$ and equate to 28	M1	
	Obtain $-9a + 4b + 34 = 0$ and $7a + 4b - 62 = 0$ or equivalents	A1	
	Solve a relevant pair of simultaneous equations for a or b	M1	
	Obtain $a = 6$, $b = 5$	A1	
	Total:	5	
(ii)	Divide by $x + 2$, or equivalent, at least as far as $k_1x^2 + k_2x$	M1	
••	Obtain $6x^2 - 7x - 3$	A1	
	Obtain $(x+2)(3x+1)(3x-3)$	A1	
	Total:	3	
(iii)	Refer to, or clearly imply, fact that 2^y is positive	M1	
	State one	A1 [↑]	following 3 linear factors from part (ii)
	Total:	2	

0

 $24.\ 9709_s17_MS_21\ Q:\ 2$

Answer	Mark	Partial Marks
State or imply non-modulus inequality $(4-x)^2 \le (3-2x)^2$ or corresponding equation, pair of linear equations or linear inequalities	M1	
Attempt solution of 3-term quadratic equation, of two linear equations or of two linear inequalities	M1	
Obtain critical values -1 and $\frac{7}{3}$	A1	SR Allow B1 for $x \le -1$ only or $x \ge \frac{7}{3}$ only if first M1 is not given
State answer $x \leqslant -1, x \geqslant \frac{7}{3}$	A1	Do not accept $\frac{7}{3} \le x \le -1$ or $-1 \ge x \ge \frac{7}{3}$ for A1
Total:	4	

 $25.\ 9709_s17_MS_22\ Q:\ 1$

Answer	Mark	Partial Marks
State or imply non-modulus equation $(x+a)^2 = (2x-5a)^2$ or pair of linear equations	B1	SR B1 for $x = 6a$
Attempt solution of quadratic equation or of pair of linear equations	M1	Allow M1 if $\frac{4}{3}$ and 6 seen
Obtain, as final answers, $6a$ and $\frac{4}{3}a$	A1	
Total:	3	

 $26.\ 9709_s17_MS_22\ Q{:}\ 6$

	Answer	Mark	Partial Marks
(i)	Evaluate expression when $x = -2$	M1	
	Obtain 0 with all necessary detail present	A1	Use of $f(x) = (x+2)(ax^2+bx+c)$ to find a, b and c , allow M1 A0 Use of $f(x) = (x+2)(ax^2+bx+c)+d$ to find a, b and c , and show $d = 0$, allow M1 A1
	Carry out division, or equivalent, at least as far as x^2 and x terms in quotient	M1	
	Obtain $6x^2 + x - 35$	A1	
	Obtain factorised expression $(x+2)(2x+5)(3x-7)$	A1	
	Total:	5	
(ii)	State or imply substitution $x = \frac{1}{y}$ or equivalent	M1	
	Obtain $-\frac{1}{2}$, $-\frac{2}{5}$, $\frac{3}{7}$	A1	
	Total:	2	

27. 9709_w17_MS_21 Q: 5

	Answer	Mark	Partial Marks
(i)	Substitute $x = -2$ and equate to zero	*M1	
	Substitute $x = \frac{1}{2}$ and equate to 40	*M1	
	Obtain $-8a + 4b - 64 = 0$ and $\frac{1}{8}a + \frac{1}{4}b = \frac{23}{2}$ or equivalents	A1	
	Solve a pair of simultaneous equations for a or for b	DM1	Needs at least one of the two previous M marks
	Obtain $a = 12$ and $b = 40$	A1	
		5	
(ii)	Attempt division by $(x + 2)$ or inspection at least as far as $kx^2 + mx$	M1	100
	Obtain $12x^2 + 16x + 5$	A1	0
	Conclude $(x+2)(2x+1)(6x+5)$	A1	
	_	3	

 $28.\ 9709_w17_MS_22\ Q\hbox{:}\ 2$

	Answer	Mark	Partial Marks
	Solve 3-term quadratic equation or a pair of linear equations	M1	For M1, must square both sides when attempting a quadratic equation
	Obtain $x = -5$ and $x = 3$	A1	
••	Substitute (at least) one value of x (less than 4) into $ x+4 - x-4 $, showing correct evaluation of modulus and producing only one answer in each case	M1	
	Obtain –8 and 6 and no others	A1	
		4	

 $29.\ 9709_w17_MS_22\ Q{:}\ 4$

	Answer	Mark	Partial Marks
(i)	Substitute $x = -3$ into either $p(x)$ or $q(x)$ and equate to zero (may be implied)	M1	Allow long division, but the remainder needs to be independent of <i>x</i>
	Obtain $a = -11$	A1	
	Obtain $b = -8$	A1	
		3	
(ii)	Divide $x+3$ into expression for $q(x)-p(x)$ (may be a four term cubic equation), or Obtain a 3 term cubic equation by subtraction	*M1	Allow *M1 for their $x^3 + 3x + 36$, but must have integer values for a and b
	Obtain $x^2 - 3x + 12$ or $x^2 - 2x - 5$ and $2x^2 - 5x + 7$	A1	100
	Apply discriminant to quadratic factor of $q(x) - p(x)$ or equivalent	DM1	dep on *M
	Obtain -39 or equivalent and conclude appropriately	Al	
		4	

 $30.\ 9709_m16_MS_22\ Q{:}\ 1$

Attempt division at least as far as quotient $2x^2 + kx$	M1	
Obtain quotient $2x^2 - x + 2$	A1	
Obtain remainder 6	A1	[3]
Special case: Use of Remainder Theorem to give 6	B 1	

31.

9709_	_m16_MS_22 Q: 2		
Either	State or imply non-modular inequality $(x-5)^2 < (2x+3)^2$ or		
	corresponding pair of linear equations	B 1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
	Obtain critical values -8 and $\frac{2}{3}$	A1	
	State answer $x < -8$, $x > \frac{2}{3}$	A1	
Or	Obtain critical value -8 from graphical method, inspection, equation	B 1	
	Obtain critical value $\frac{2}{3}$ similarly	B2	
	State answer $x < -8$, $x > \frac{2}{3}$	B1	[4]

 $32.\ 9709_s16_MS_21\ Q:\ 4$

(i)	Carry out division, or equivalent, at least as far as $8x^2 + kx$	M1	
	Obtain correct quotient $8x^2 + 14x - 15$	A1	
	Confirm remainder is 5	A1	[3]
(ii)	State or imply expression is $(x + 2)$ (their quadratic quotient)	В1√	
	Attempt factorisation of their quadratic quotient	M1	
	Obtain $(x+2)(2x+5)(4x-3)$	A1	[3]
(iii)	State $\pm \frac{3}{4}$ and no others, following their 3 linear factors	B 1√	[1]

33. 9709 s16 MS 22 Q: 2

(i)	Carry out division, or equivalent, at least as far as quotient $2x + k$	M1	
	Obtain quotient $2x-3$	A1	
	Obtain remainder $-25x+18$	A1	[3]
(ii)	Subtract remainder of form $ax + b$ $(ab \neq 0)$ from $2x^3 - 7x^2 - 9x + 3$ or multiply		

(ii) Subtract remainder of form ax + b ($ab \ne 0$) from $2x^3 - 7x^2 - 9x + 3$ or multiply their quotient by $x^2 - 2x + 5$ M1

Obtain p = 16 and q = -15A1 [2]

 $34.\ 9709_s16_MS_22\ Q:\ 3$

- (i) State or imply non-modular equation $(3u+1)^2 = (2u-5)^2$ or corresponding pair of linear equations
 Attempt solution of 3-term quadratic equation or of 2 linear equations
 Obtain -6 and $\frac{4}{5}$ A1 [3]
- (ii) Evaluate $\tan^{-1} \frac{1}{k}$ for at least one of their solutions k from part (i) M1

 Obtain 0.896

 A1 [2]

35. 9709_w16_MS_22 Q: 1

State non-modulus equation $(0.4x - 0.8)^2 = 4$ or			SR One solution only – B1
equivalent or corresponding pair of linear equations	В1		
Solve 3-term quadratic equation or pair of linear equations	M1		Must see some evidence of attempt to solve the quadratic for M1 for at least one value of x For a pair of linear equations, there must be a sign difference
Obtain –3 and 7	A1	[3]	If extra solutions are given then A0

 $36.\ 9709_w16_MS_22\ Q\!:\ 4$

(i)	Substitute $x = -1$ and simplify	M1		Allow attempt at long division, must get down to a remainder
				Allow M1 if at least 2 numerical values of <i>a</i> are used
				May equate to $(x+1)(Ax^2 + Bx + C) + R$ -
				allow M1 if they get as far as finding R
	Obtain $-4 + a - a + 4 = 0$ and conclude appropriately	A1	[2]	Must have a conclusion - allow 'hence shown', or made a statement of intent at the start of the question
(ii)	Substitute $x = 2$ and equate to -42 and attempt to solve	M1		May equate to $(x-2)(Ax^2 + Bx + C)$, must have a complete method to get as far as $a =$ to obtain M1
	Obtain $a = -13$	A1	[2]	to obtain ivi
(iii)	Divide $p(x)$ with their a at least as far as			40
	$4x^2 + kx$	M1		
	Obtain $4x^2 - 17x + 4$	A1		0,
	Obtain $(x+1)(4x-1)(x-4)$ or equivalent if x^2 already involved	A1	6	If $(x+1)(4x-1)(x-4)$ seen with no evidence
	Obtain $(x^2 + 1)(2x - 1)(2x + 1)(x - 2)(x + 2)$	A1	[4]	of long division then allow the marks

$37.\ 9709_w16_MS_23\ Q:\ 4$

(i)	Substitute $x = \frac{1}{2}$ and equate to zero Obtain $a = 2$	M1 A1	[2]
(ii)	Divide by $2x-1$ at least as far as $x^2 + kx$ Obtain quotient $x^2 + 2x + 5$ Calculate discriminant of 3-term quadratic expression or equivalent Obtain -16 and conclude appropriately	M1 A1 M1 A1	[4]
(iii)	Use logarithms with power law shown in solving $6^y = \frac{1}{2}$ Obtain -0.387	M1 A1	[2]

38. $9709_s15_MS_21$ Q: 4

Substitute $x = -2$ in $f(x)$ and equate to zero to obtain $-8 + 4a + b = 0$ or equiv	B1	
Substitute $x = -1$ in $g(x)$ and equate to -18	M1	
Obtain $-1+b-a=-18$ or equivalent	A1	
Solve a pair of linear equations for a or b	DM1	
Obtain $a = 5$, $b = -12$	A1	[5]
	Substitute $x = -1$ in $g(x)$ and equate to -18 Obtain $-1 + b - a = -18$ or equivalent Solve a pair of linear equations for a or b	Substitute $x = -1$ in $g(x)$ and equate to -18 M1 Obtain $-1 + b - a = -18$ or equivalent Solve a pair of linear equations for a or b DM1

(ii) Simplify
$$g(x) - f(x)$$
 to obtain form $kx^2 + c$ where $k < 0$ M1
Obtain $-17x^2 + 7$ and state 7, following their value of c A1 $\sqrt{}$ [2]

$39.\ 9709_s15_MS_22\ Q:\ 2$

(i)	Substitute $x = -2$ into expression and equate to zero	M1	
	Obtain $-32 + 4a + 2(a+1) - 18 = 0$ or equivalent	A1	
	Obtain $a = 8$	A 1	[3]

(ii)	Attempt to find quadratic factor by division, inspection,		A		M1	
	Obtain $4x^2 - 9$			9	A1	
	State $(x+2)(2x-3)(2x+3)$. 0			A1	[3]

$40.\ 9709_w15_MS_21\ Q: 6$

(i)	Carry out division at least as far as quotient $x^2 + kx$	M 1
	Obtain partial quotient $x^2 + 2x$	A1
	Obtain quotient $x^2 + 2x + 1$ with no errors seen	A1
	Obtain remainder $5x + 2$	A1 [4]

(ii)	<u>Either</u>	Carry out calculation involving $12x + 6$ and their remainder $ax + b$ Obtain $p = 7, q = 4$	M1 A1	
	<u>Or</u>	Multiply $x^2 - x + 4$ by their three-term quadratic quotient Obtain $p = 7, q = 4$	M1 A1	[2]

(iii)	Show that discriminant of $x^2 - x + 4$ is negative	B 1	
	Form equation $(x^2 - x + 4)(x^2 + 2x + 1) = 0$ and attempt solution	M1	
	Show that $x^2 + 2x + 1 = 0$ gives one root $x = -1$	A1	[3]

41. 9709_w15_MS_23 Q: 4

(i)	Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$	M1	
	Obtain partial quotient $3x^2 + 11x$	A1	
	Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen	A1	
	Confirm remainder is 39	B 1	[4]

(ii)	State or imply $(x-2)(3x^2+11x+20) = 0$	B 1	
	Calculate discriminant of quadratic factor or equivalent	M1	
	Obtain –119 or equivalent and confirm only one real root	A1	[3]

$42.\ 9709_s20_MS_21\ Q\!\!: 1$

Use correct logarithm property to produce one term on LHS	M1
Use correct process to obtain equation without logarithms	M1
Obtain $\frac{x+1}{x} = 4$ or equivalent and hence $x = \frac{1}{3}$	A1
	3

$43.\ 9709_s20_MS_22\ Q{:}\ 1$

Apply logarithms to both sides and apply power law at least once	M1
Rearrange to the form $y = \frac{3\ln 9}{\ln 2}x$ OE	A1
Obtain $k = 9.51$	A1
	3

$44.\ 9709_s20_MS_22\ Q:\ 4$

State or imply equation is $\ln y = \ln A - 2p \ln x$	B1
Equate gradient of line to $-2p$	M1
Obtain $-2p = -2.6$ and hence $p = 1.3$	A1
Substitute appropriate values to find ln A	M1
Obtain $\ln A = 1.252$ and hence $A = 3.5$	A1
Alternative method for question 4	
State or imply equation is $\ln y = \ln A - 2p \ln x$	B1
Substitute given coordinates to obtain 2 simultaneous equations and solve to obtain $3.5p$	M1
Obtain $3.5p = 4.55$ and hence $p = 1.3$	A1
Substitute appropriate values to find ln A	M1
Obtain $\ln A = 1.252$ and hence $A = 3.5$	A1
	5

45. 9709_w20_MS_22 Q: 2

Answer	Mark	Partial Marks
Use $2^{3x+2} = 4 \times 2^{3x}$	B1	OE
Solve equation for 2 ^{3x}	M1	
Obtain $2^{3x} = 43$	A1	
Apply logarithms and use power law for $2^{3x} = k$ where $k > 0$	M1	
Obtain 1.809	A1	AWRT
	5	

46. 9709_m19_MS_22 Q: 3

Answer	Mark	Partial Marks
State or imply equation is $\ln y = \ln A + px + p$	B1	
Equate gradient of line to p	M1	
Obtain $p = 0.75$	A1	
Substitute appropriate values to find ln A	M1	
Obtain $\ln A = 1.335$ and hence $A = 3.8$	A1	
	5	

 $47.\ 9709_s19_MS_21\ Q:\ 1$

Answer	Mark	Partial Marks
Use logarithm subtraction property to produce logarithm of quotient	M1	
Factorise at least as far as $x(x^2 - 4)$ and $x(x - 2)$ or use correct algebraic long division to obtain a quotient of $x + 2$ and a remainder of 0 from correct working	В1	Allow B1 either before or after application of log property Allow B1 for equivalent using factorisation then use of addition rule Allow B1 for $\frac{(x+2)(x^2-2x)}{(x^2-2x)}$
Obtain final answer $ln(x+2)$ using correct process	A1	With no errors seen
	3	

 $48.\ 9709_w19_MS_22\ Q:\ 2$

	Answer	Mark	Partial Marks
(i)	State or imply non-modular equation $(4x+5)^2 = (x-7)^2$ or pair of different linear equations	B1	
	Attempt solution of 3-term quadratic equation or pair of linear equations	M1	
	Obtain $\frac{2}{5}$ and -4	A1	SC For $x = -4$ only, from correct work, allow B1
	0	3	
(ii)	Apply logarithms and use power law for $2^y = k$ where $k > 0$ from (i)	M1	
	Obtain –1.32 only	A1	AWRT
••		2	

 $49.\ 9709_w19_MS_22\ Q{:}\ 3$

Answer	Mark	Partial Marks
$ \ln y = \ln k + a \ln x $	B1	SOI
Equate gradient of line to a	M1	
Obtain $a = -1.39$	A1	OE
Substitute appropriate values into a correct equation to find $\ln k$	M1	
Obtain $\ln k = 4.266$ and $k = 71.2$	A1	SC1 for gradient = -1.39 and no other relevant working
Alternative method for question 3		
$\ln y = \ln k + a \ln x$	B1	SOI
$3.96 = \ln k + 0.22a$	M1	For one correct equation
$2.43 = \ln k + 1.32a$	М1	For a second correct equation and attempt to solve to find on unknown
Obtain $a = -1.39$	A1	OE
Obtain $\ln k = 4.266$ and $k = 71.2$	A1	SC1 for gradient = -1.39 and no other relevant working
Alternative method for question 3		101
$e^{3.96} = k \times 0.22^a$ and $e^{2.43} = k \times 1.32^a$	B1	.07
Apply a correct method to obtain a	M1	
Obtain $a = -1.39$	A1	OE
Substitute appropriate values into a correct equation to find k	M1	0,
Obtain $k = 71.2$	A1	AWRT
	5	

 $50.\ 9709_s18_MS_21\ Q:\ 1$

	Answer	Mark	Partial Marks
At	ttempt to solve quadratic equation in e ^x	M1	Either directly or using substitution $u = e^x$
Ob	$btain e^x = \frac{1}{3}, e^x = 27$	A1	$e^x = \frac{1}{3}$, $e^x = 27$ may be implied if $u = e^x$ is stated
Us	se correct process at least once for solving $e^x = c$ where $c > 0$	M1	
Ob	btain -ln3 from a correct solution	A1	Condone use of $x = e^x$
Ob	btain 3ln3 from a correct solution	A1	
••		5	

 $51.9709_s18_MS_21$ Q: 2

Answer	Mark	Partial Marks
Either		
State or imply equation $\ln y = \ln A + \ln B \ln x$	B1	
Equate gradient of line to ln B	M1	
Obtain $\ln B = 1.6486$ and hence $B = 5.2$	A1	
Substitute appropriate values to find $\ln A$	M1	
Obtain $\ln A = 1.2809$ and hence $A = 3.6$	A1	
Or		
State or imply equation $\ln y = \ln A + \ln B \ln x$	B1	
Use given coordinates to obtain a correct equation	B1	Equations are $4.908 = \ln A + 2.2 \ln B$ and $11.008 = \ln A + 5.9 \ln B$
Use given coordinates to obtain a second correct equation and attempt solve both equations simultaneously to obtain at least one of the unknowns $\ln A$ or $\ln B$	ot to M1	.0,
Obtain $\ln B = 1.6486$ and hence $B = 5.2$	A1	10
Obtain $\ln A = 1.2809$ and hence $A = 3.6$	A1	
Or		NO.
Use given coordinates to obtain a correct equation	B1	Equations are $e^{4.908} = AB^{2.2}$ and $e^{11.008} = AB^{5.9}$
Use given coordinates to obtain a second correct equation	B1	
Solve to obtain B	M1	M mark dependent on both previous B marks
B = 5.2	A1	
A = 3.6	A1	
	5	

52. 9709_s18_MS_22 Q: 4

	Answer	Mark	Partial Marks
(i)	Use $2\ln(2x) = \ln(4x^2)$	B1	
	Use law for addition or subtraction of logarithms	M1	
	Obtain correct equation $\frac{4x^2}{x+3} = 16$ or equivalent	A1	With no logarithms involved
4 4	Solve 3-term quadratic equation	M1	Dependent on previous M1
	Conclude with $x = 6$ and, finally, no other solutions	A1	
		5	
(ii)	Apply logarithms and use power law for $2^{u} = k$ or $2^{u+1} = 2k$ where $k > 0$	M1	
	Obtain 2.585	A1	
		2	

$53.\ 9709_w18_MS_21\ Q:\ 1$

	Answer	Mark	Partial Marks
(i)	State or imply non-modular equation $(9x-2)^2 = (3x+2)^2$ or pair of linear equations	B1	
	Attempt solution of quadratic equation or of 2 linear equations	M1	
	Obtain 0 and $\frac{2}{3}$	A1	SC: B1 for one correct solution
		3	
(ii)	Apply logarithms and use power law for $3^y = k$ where $k > 0$	M1	Must be using their answers to part (i)
	Obtain -0.369	A1	
		2	

$54.\ 9709_w18_MS_22\ Q:\ 2$

 Answer	Mark	Partial Marks
Recognise 9^x as $(3^x)^2$ or 3^{2x}	B1	May be implied by $3^x (3^x + 1) (= 240)$
Attempt solution of quadratic equation in 3 ^x	*M1	Perhaps using substitution $u = 3^x$
Obtain, finally, 3 ^x =15 only	A1	
Apply logarithms and use power law for $3^x = k$ where $k > 0$	M1	Dependent *M, need to see $x \ln 3 = \ln k$, $x = \log_3 k$ oe
Obtain 2.465	A1	May be done using $9^{\frac{x}{2}}$, same processes
	5	

$55.\ 9709_m17_MS_22\ Q{:}\ 1$

	Answer	Mark	Partial Marks
	Use $2\ln(2x) = \ln(2x)^2$	*M1	
	Use addition or subtraction property of logarithms	*M1	
	Obtain $4x^2 = (x+3)(3x+5)$ or equivalent without logarithms	A1	
	Solve 3-term quadratic equation	DM1	dep *M *M
••	Conclude with $x = 15$ only	A1	
•	Total:	5	

 $56.\ 9709_m17_MS_22\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	State or imply non-modulus inequality $(2x-5)^2 < (x+3)^2$ or corresponding equation or pair of linear equations	B1	
	Attempt solution of 3-term quadratic inequality or equation or of 2 linear equations	M1	
	Obtain critical values $\frac{2}{3}$ and 8	A1	
	State answer $\frac{2}{3} < x < 8$	A1	
	Total:	4	
(ii)	Attempt to find y from $\ln y = \text{upper limit of answer to part (i)}$	M1	
	Obtain 2980	A1	.0.
	Total:	2	

 $57.\ 9709_s17_MS_21\ Q:\ 1$

Answer		Mark	Partial Marks
Take logarithms of both sides and apply power law to both sides		M1	Allow $y = \frac{\log 5}{4\log 3}$ for M1 A1
Rearrange to the form $y = \frac{\ln 5}{4 \ln 3} x$ or equivalent		A1	
Obtain $m = 0.366$		A1	
	Fotal:	3	

58. 9709_s17_MS_22 Q: 2

	Answer	Mark	Partial Marks
	Apply logarithms to both sides and apply power law	*M1	
	Obtain $(x+4)\log 3 = 2x\log 5$ or equivalent	A1	
••	Solve linear equation for x	DM1	dep *M
	Obtain 2.07	A1	Allow greater accuracy
	Total:	4	

 $59.\ 9709_s17_MS_22\ Q\hbox{:}\ 5$

Answer	Mark	Partial Marks
State or imply $\ln y = \ln K - 2x \ln a$	B1	
EITHER:		
Obtain -0.525 as gradient of line	(M1	
Equate their $-2 \ln a$ to their gradient and solve for a	M1	Allow $2 \ln a$ = their gradient for M1
Obtain $a = 1.3$	A1	
Substitute to find value of K	M1	
Obtain $K = 8.4$	A1)	
OR:		
Obtain two equations using coordinates correctly	(M1	
Solve these equations to obtain $2 \ln a$ or equivalent	M1	
Obtain $a = 1.3$	A1	0.
Substitute to find value of K	M1	
Obtain $K = 8.4$	A1)	70
Total:	6	

 $60.\ 9709_w17_MS_21\ Q{:}\ 1$

Answer	Mark	Partial Marks
Use subtraction or addition property of logarithms	*M1	
Obtain $\frac{3x+1}{x+2}$ = e or equivalent with no presence of logarithm	A1	
Use correct process to solve equation	DM1	
Obtain $\frac{2e-1}{3-e}$ or exact equivalent	A1	
	4	

 $61.\ 9709_w17_MS_21\ \ Q:\ 3$

Answer	Mar	rk	Partial Marks
Take logarithms of both sides a law	and apply power	M1	Condone incorrect inequality signs until final answer. The first 6 marks are for obtaining the correct critical values.
Obtain $2x < \frac{\ln 80}{\ln 1.3}$ or equivale	nt using log ₁₀	A1	
Obtain $x = 8.35$		A1	
State or imply non-modulus in $(3x-1)^2 > (3x-10)^2$ or corres or linear equation $3x-1=-(3x-1)^2$	ponding equation	B1	
Attempt solution of inequality (obtaining 3 terms when squar or solving linear equation with different)	ng each bracket	M1	300
Obtain $x = \frac{11}{6}$ or $x = 1.83$		A1	
Conclude 1.83 < x < 8.35		A1	
		7	

 $62.\ 9709_w17_MS_22\ Q:\ 1$

	Answer	Mark	Partial Marks
	Introduce logarithms to both sides and use power law	*M1	
	Obtain $(3x-1)\log 5 = 4x\log 2$ or equivalent	A1	Allow A1 for poor use of brackets if recovered later
***	Solve linear equation for x	DM1	dep *M
***	Obtain 0.783	A1	Allow 3 sf or better
7.		4	

63. $9709 m16 MS_{22}$ Q: 3

Use $2 \ln x = \ln x^2$	B 1	
Use law for addition or subtraction of logarithms	M1	
Obtain $x^2 = (3+x)(2-x)$ or equivalent with no logarithms	A1	
Solve 3-term quadratic equation	M 1	
Obtain $x = \frac{3}{2}$ and no other solutions	A1	[5]

$64.\ 9709_s16_MS_21\ Q\hbox{:}\ 3$

Rearrange to $3e^{2x} - 14e^x + 8 = 0$ or equivalent involving substitution B1	
Solve quadratic equation in e^x to find two values of e^x *M1	
Obtain $\frac{2}{3}$ and 4	
Use natural logarithms to solve equation of form $e^x = k$ where $k > 0$ dep on DM1	
Allow M mark if left in exact form M1	
Obtain -0.405 A1	
Obtain 1.39 A1	[6]

$65.\ 9709_s16_MS_22\ Q{:}\ 1$

Use power law for logarithms correctly at least once		
Obtain $3x \log 5 = 4y \log 7$ or $3x \ln 5 = 4y \ln 7$ or equivalent	A1	
Obtain 1.612	A1	[3]

66. 9709_w16_MS_21 Q: 1

(i)	Carry out method for solving quadratic equation in 3 ^x	M1	
	Obtain at least $3^x = 7$	A1	
	Use logarithms to solve an equation of the form $3^x = k$ where $k > 0$ Obtain 1.77	M1 A1	[4]
(ii)	State ± 1.77 , following positive answer from part (i)	B1√	[1]

67. $9709_{\text{w}}16_{\text{MS}}_{21}$ Q: 2

State or imply $\ln y = \ln A + px$	B1
Equate gradient of line to p	M1
Obtain $p = 0.32$	A1
Substitute to find A	M1
Obtain $A = 4.81$	A1
OR 1:	
$3.17 = \ln A + 5p \text{ or } 4.77 = \ln A + 10p$	B1
Correct attempt to obtain $\ln A$ or p	M1
Correct attempt to obtain the other unknown	M1
Obtain $A = 4.81$	A1
Obtain $p = 0.32$	A1
OR 2:	
$e^{3.17} = Ae^{5p} \text{ or } e^{4.77} = Ae^{10p}$	B1
Correct attempt to obtain p	M1
Correct attempt to get A	M1
Obtain $A = 4.81$	A1
Obtain $p = 0.32$	A1 [5]

 $68.\ 9709_w16_MS_22\ Q:\ 2$

(i)	Use $4^y = 2^{2y}$	B1		
	Attempt solution of quadratic equation in 2^y	M1		
	Obtain finally $2^y = 7$ only	A1	[3]	
(ii)	Apply logarithms to solve equation of form $2^y = k$ where $k > 0$	M1		Must be using their positive answer for (i)
	Obtain 2.81	A1	[2]	

69. $9709_{\text{w}}16_{\text{MS}}23$ Q: 2

State or imply $\ln y = \ln K + p \ln x$ Calculate gradient of line Obtain $p = 1.35$ Substitute to find K Obtain $K = 7.11$ or $K = 7.12$	ido	B1 M1 A1 M1 A1	[5]
--	-----	----------------------------	-----

70. $9709_{\text{w}}16_{\text{MS}}_{\text{2}}3$ Q: 6

(i)	State $\frac{dx}{dt} = \frac{1}{t+1}$ Use product rule for derivative of y Obtain $2t \ln t + t$ or equivalent Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain $(t+1)(2t \ln t + t)$	B1 M1 A1 M1 A1	[5]
(ii)	Solve $2 \ln t + 1 = 0$ Obtain $t = e^{-\frac{1}{2}}$	M1 A1	[2]
(iii)	Identify $t = 1$ only Obtain 2	B1 B1	[2]

71. 9709_s15_MS_21 Q: 1

(i)	State or imply equation $(3x+4)^2 = (3x-11)^2$ or $3x+4 = -(3x-11)$	B1	
	Attempt solution of 'quadratic' equation or linear equation	M1	
	Obtain $x = \frac{7}{6}$ or equivalent (and no other solutions)	A1	[3]

(ii) Use logarithms to solve equation of form 2^y = their answer to (i) (must be + ve) M1 Obtain 0.222 (and no other solutions) A1 [2]

72	9709	s15	MS	21	Ω	9
14.	9109	SIO	IVLO	41	W:	

State or imply that $\ln y = \ln A + p(x-1)$	B1	
Equate gradient to p or obtain two equations for $\ln A$ and p Obtain $p = 0.44$	M1 A1	
Substitute values correctly, to find value of $\ln A$ Obtain $A = 3.2$	DM1 A1	[5]
Alternative:		
Obtain an equation either $e^{1.6} = Ae^p$ or $e^{2.92} = Ae^{4p}$	M1	
Obtain both equations correctly	A1	
Solve to obtain $p = 0.44$	A1	
Substitute value correctly to find A	DM1	

73. 9709_s15_MS_22 Q: 1

Obtain A = 3.2

- Introduce logarithms and use power law Obtain x = 21.6
- Pacamilo (ii) Obtain or imply -21.6 or -21 as lower value State 43

[2]

A1

[5]

В1 В1 [2]

74. $9709_s15_MS_22$ Q: 7

- (a) Differentiate $4 \ln y$ to obtain $\frac{4}{y} \times \frac{dy}{dx}$
 - Differentiate 6xy to obtain $6y + 6x \frac{dy}{dx}$
 - Substitute 1 and 1 and solve for $\frac{dy}{dx}$
 - Obtain $-\frac{9}{10}$ or equivalent

A1 [4]

В1

В1

M1

- **(b)** Obtain $\frac{dx}{dt} = -10t^{-2} 1$
 - Obtain derivative of form $k(2t-1)^{-\frac{1}{2}}$ for $\frac{dy}{dt}$
 - Obtain correct (2t-1)
 - Identify value of t as 5 Obtain expression for $\frac{dy}{dx}$ correctly, with numerical value of t substituted
 - Obtain $-\frac{5}{21}$ or exact equivalent

- В1
- M1
- A1
- B1
- M1
 - **A**1 [6]

75. $9709 w15 MS_21 Q: 1$

Introduce logarithms and use power law twice	M1*	
Obtain $(x+3)\log 5 = (x-1)\log 7$ or equivalent	A1	
Solve linear equation for <i>x</i>	M1 dep	
Obtain 20.1	A1	[4]

76. $9709 \text{w}15 \text{MS} \text{_22}$ Q: 1

(i)	<u>Either</u>	Square both sides to obtain three-term quadratic equation	M1	
		Solve three-term quadratic equation to obtain two values	M1	
		Obtain -1 and $\frac{7}{3}$	A1	
	<u>Or</u>	Obtain $\frac{7}{3}$ from graphical method, inspection or linear equation	B1	
		Obtain –1 similarly	B2	[3]

(ii) Use logarithmic method to solve an equation of the form $5^y = k$ where k > 0 M1
Obtain 0.526 and no others
A1 [2]

77. 9709 w15 MS 22 Q: 3

State or imply that $\ln y = \ln K + m \ln x$	B 1	
Form a numerical expression for gradient of line	M1	
Obtain -1.39 or -1.4	A1	
Use their gradient value and one point correctly to obtain intercept	M1	
Obtain value for $\ln K$ between 4.26 and 4.28	A1	
Obtain $K = 71$ or $K = 72$ or value rounding to either with no error noted	A1	[6]

78. $9709_{\text{w}15}_{\text{MS}}_{23}$ Q: 2

(i) Either State or imply non-modulus equation $(2x+3)^2 = (x+8)^2$ or corresponding pair of linear equations Solve 3-term quadratic equation or 2 linear equations M1

Obtain $x = -\frac{11}{3}$ and x = 5Obtain x = 5 from graphical method, inspection, equation, ...

B1

Obtain $x = -\frac{11}{3}$ similarly

B2 [3]

(ii) Use logarithms to solve equation of form $2^y = k$ where k > 0 M1
Obtain 2.32
A1 [2]

79. 9709_s20_MS_21 Q: 5

(a)	Differentiate using the product rule to obtain $ax^2 \cos 2x - bx^3 \sin 2x$	M1
••	Obtain $3x^2 \cos 2x - 2x^3 \sin 2x$	A1
	Equate first derivative to zero and confirm $x = \sqrt[3]{1.5x^2 \cot 2x}$ AG	A1
		3
(b)	Consider sign of $x - \sqrt[3]{1.5x^2 \cot 2x}$ or equivalent for 0.59 and 0.60	M1
	Obtain -0.009 and 0.005 or equivalents and justify conclusion	A1
		2
(c)	Use iteration correctly at least once	M1
	Obtain final answer 0.596	A1
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval [0.5955, 0.5965]	A1
		3

 $80.\ 9709_{\rm s}20_{\rm MS}_22\ {\rm Q}{\rm :}\ 6$

(a)	Substitute $x = -3$, equate to zero and attempt solution for a	M1
	Obtain $a = 17$	A1
		2
(b)	Divide by $x+3$ at least as far as the x term	M1
	Obtain $6x^2 - x - 1$	A1
	Conclude $(x+3)(3x+1)(2x-1)$	A1
		3
(c)	Attempt solution of $\sin \theta = k$ where $-1 \le k \le 1$	M1
	Obtain 199.5	A1
	Obtain 340.5	A1
		3

81. $9709_{w20}_{S_21}$ Q: 6

	Answer	Mark	Partial Marks
(a)	Use $\sin 2\theta = 2\sin\theta\cos\theta$	B1	
	Obtain $\sin \theta = \frac{1}{6}$	B1	10,
		2	
(b)	Use correct identity or identities to find value of $\sec heta$	M1	
	Obtain $\frac{6}{\sqrt{35}}$ or exact equivalent	A1	
		2	
(c)	Use correct identity or identities to find value of $\cos 2\theta$	M1	
	Obtain $\frac{17}{18}$ or exact equivalent	A1	
	. 60	2	

82. $9709_{\text{w}}20_{\text{MS}}22$ Q: 1

Answer	Mark	Partial Marks
Use $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$	B1	SOI
Simplify to obtain $\cos \theta = k$ where $0 < k < 1$	M1	
Obtain $\cos \theta = \frac{3}{7}$ and hence $\theta = 64.6$ and no other solutions in the	A1	
range		
Alternative method for question 1		
Use identity $\csc^2\theta = 1 + \cot^2\theta$	B1	
Simplify to obtain $\tan \theta = k_1$ or $\sin \theta = k_2$ where $0 < k_2 < 1$	M1	
Obtain $\tan \theta = \frac{1}{3}\sqrt{40}$ or $\sin \theta = \frac{1}{7}\sqrt{40}$ and hence $\theta = 64.6$ and no	A1	
other solutions in the range		
	3	0-

83. $9709 m19 MS_2$ Q: 1

	Answer	Mark	Partial Marks
Use	e identity $\sec^2 \theta = 1 + \tan^2 \theta$	B1	
Atte	empt solution of quadratic equation to find two values of $ an heta$	М1	
Obt	$a \sin \tan \theta = -\frac{1}{2}, 3$	A1	
Obt	tain 71.6 and 153.4 and no others between 0 and 180	A1	
	4'0'	4	

 $84.\ 9709_s19_MS_21\ Q{:}\ 7$

	Answer	Mark	Partial Marks
(i)	State or imply $\csc 2\theta = \frac{1}{2\sin\theta\cos\theta}$	B1	
	Attempt to express left-hand side in terms of $\sin \theta$ and $\cos \theta$ only	M1	
	Simplify to confirm $\csc^2\theta$ AG	A1	
		3	
(ii)	Use identity to express left-hand side in terms of sin 30 or cosec 30	M1	
	Obtain $\frac{2}{\sin 30}$ or 2cosec 30 and confirm 4 AG	A1	
		2	
(iii)	Solve quadratic equation of the form $k\csc^2\frac{\phi}{2} + \csc\frac{\phi}{2} - 12 = 0$ or	*M1	Allow sign errors
	$12\sin^2\frac{\phi}{2} - \sin\frac{\phi}{2} - k = 0 \text{ correctly for } \csc\frac{1}{2}\phi \text{ or } \sin\frac{1}{2}\phi \text{ to find two}$ values of $\sin\frac{1}{2}\phi$ or $\csc\frac{1}{2}\phi$ Obtain $\sin\frac{1}{2}\phi = -\frac{1}{4}, \frac{1}{3}$	A1	100
	Use correct process to find at least one correct value of ϕ from $\sin \frac{1}{2}\phi = \pm \frac{1}{4}, \ \pm \frac{1}{3}$	DM1	Allow for any rounded or truncated value
	Obtain any two of -331.0, -29.0, 38.9, 321.1	A1	Allow greater accuracy
	Obtain all four values and no others between -360 and 360	A1	Allow greater accuracy
		5	

 $85.\ 9709_s19_MS_22\ Q\hbox{:}\ 7$

	Answer	Mark	Partial Marks
(a)(i)	State $R = \sqrt{32}$ or equivalent or 5.657	B1	
	Use appropriate trigonometry to find α	M1	
	Obtain $\alpha = 45$	A1	
	100	3	
(a)(ii)	Carry out correct process to find one value of θ	M1	
	Obtain 17.1	A1	Ignore other positive values greater than 17.1
		2	
(b)	Use or imply $\cot 2x = \frac{1}{\tan 2x}$	B1	
	Use identity of form $\tan 2x = \frac{\pm 2 \tan x}{1 \pm \tan^2 x}$ to obtain equation in $\tan x$	M1	
	Obtain $6 \tan^2 x + 10 \tan x - 4 = 0$ or equivalent	A1	
	Attempt solution of 3-term quadratic equation for tan x	M1	
	Obtain $\tan x = \frac{1}{3}$ and hence 0.32	A1	Allow greater accuracy
	Obtain $\tan x = -2$ and hence 2.03 and no others between 0 and π	A1	Allow greater accuracy
		6	

86. 9709_w19_MS_21 Q: 6

	Answer	Mark	Partial Marks
(a)	Express equation as $\frac{1}{\cos \alpha \sin \alpha} = 7$	B1	OE; May be implied by subsequent work
	Attempt use of identity for $\sin 2\alpha$ or attempt to obtain a quadratic equation in terms of any one of the following: $\sin^2 \alpha$, $\cos^2 \alpha$, $\cot^2 \alpha$ or $\tan^2 \alpha$	M1	From equation of form $\sin 2\alpha = k$ where $0 < k < 1$ or from use of correct identities
	Obtain $\sin 2\alpha = \frac{2}{7}$ or a correct 3 term quadratic equation, equated to zero in any one of the following: $\sin^2 \alpha$, $\cos^2 \alpha$, $\cot^2 \alpha$ or $\tan^2 \alpha$	A1	
	Attempt correct process to find at least one correct value of α	M1	
	Obtain 8.3 and 81.7 and no others between 0 and 90	A1	
		5	
(b)	Simplify left-hand side to obtain 2 sin β cos 20°	B1	
	Attempt to form equation where $\tan \beta$ is only variable, $\tan \beta \neq 3$	M1	.01
	Obtain $\tan \beta = \frac{3}{\cos 20^{\circ}}$	A1	OE
	Obtain $\beta = 72.6$ and no others between 0 and 90	A1	
		5	

87. $9709 w19 MS_22 Q: 8$

	Answer	Mark	Partial Marks
(i)	State $R = 1.3$ or $\frac{10}{3}$	B1	Not $\sqrt{1.69}$
	Use appropriate trigonometry to find α	М1	AWRT ±1.18 rads, AWRT ±0.391 rads, AWRT ±67.4°, AWRT ±22.6°
	Obtain 67.38 with no errors seen	A1	AWRT
		3	
(ii)	Carry out correct method to find one value of θ between 0 and 360	M1	
	Obtain 240.6 (or 344.6)	A1	
	Carry out correct method to find second value of θ between 0 and 360	M1	Must be using either degrees throughout or radians throughout for M marks
	Obtain 344.6 (or 240.6)	A1	
••	*	4	
(iii)	Recognise expression as $[3-2R\cos(\theta+\alpha)]^2$	M1	
	Obtain $[3-2\times(-1.3)]^2$ and hence 31.36 or 31.4	A1	
	Obtain $[3-2\times1.3]^2$ and hence 0.16	A1	
		3	

 $88.\ 9709_w18_MS_21\ Q:\ 3$

Answer	Mark	Partial Marks
State $\frac{1}{\cos^2 \theta} = \frac{3}{\sin \theta}$ or $1 + \tan^2 \theta = \frac{3}{\sin \theta}$	B1	
Produce quadratic equation in $\sin \theta$	M1	Dependent on B1
Solve 3-term quadratic equation to find value between -1 and 1 for $\sin \theta$	M1	Dependent on first M1
Obtain $\sin \theta = \frac{1}{6}(-1 + \sqrt{37})$ and hence 57.9	A1	
Obtain 122.1 and no others between 0 and 180	A1	
	5	

89. $9709_{\text{w}18}_{\text{MS}}_{\text{22}}$ Q: 7

	Answer	Mark	Partial Marks
(i)	Substitute $-\frac{3}{2}$ and simplify	Mi	Allow use of identity assuming a factor of $2x+3$ to obtain a quadratic factor. Need to see use of 4 equations to verify quadratic for M1, A1 for conclusion. Allow verification by expansion. Allow use of identity including a remainder to obtain a quadratic factor and a remainder of zero. Need to see use of 4 equations for M1, A1 for conclusion. Allow verification by expansion. Allow use of long division, must reach a remainder of zero for M1
	Obtain -27+9+15+3 or equivalent, hence zero and conclude, may have explanation at start of working	A1	Need powers of $-\frac{3}{2}$ evaluating for A1 AG; necessary detail needed
		2	
(ii)	Use $\cos 2\theta = 2\cos^2 \theta - 1$	B1	
	Simplify $a\cos^2\theta + b = \frac{6\cos\theta - 5}{2\cos\theta + 1}$ to polynomial form	M1	
	Obtain $8\cos^3\theta + 4\cos^2\theta - 10\cos\theta + 3 = 0$	A1	AG; necessary detail needed, must be completely correct with no poor use of brackets for A1
		3	
(iii)	Attempt either division by $2x+3$ and reach partial quotient $x^2 + kx$ or use of identity or inspection	*M1	Or equivalent using $\cos \theta$ or c
	Obtain quotient $4x^2 - 4x + 1$	A1	Or equivalent
	Obtain factorised form $(2x+3)(2x-1)^2$	A1	Or equivalent, may be implied by later work
	Solve for $\cos \theta = k$ to find at least one value between 0 and 360	M1	Dependent *M
	Obtain 60 and 300 and no others	A1	SC1: Equation solver used to obtain 60 and 300 and no others, then 5/5 SC2: Equation solver used to obtain 60 then 4/5 SC 3: $\cos\theta = 0.5$, $(\cos\theta = -1.5)$ seen implies first 3 marks.
		5	

90. 9709_m17_MS_22 Q: 2

	Answer	Mark	Partial Marks
(i)	Use identity $\cot \theta = \frac{1}{\tan \theta}$	B1	
	Attempt use of identity for $\tan 2\theta$	M1	
	Confirm given $\tan^2 \theta = \frac{3}{4}$	A1	
	Total	: 3	
(ii)	Obtain 40.9	B1	
	Obtain 139.1	B1	
	Total	: 2	

91. $9709_s17_MS_21$ Q: 5

	Answer	Mark	Partial Marks
(i)	State $R = 3$	B1	Allow marks for (i) if seen in (ii)
	Use appropriate trigonometric formula to find α	M1	
	Obtain 48.19 with no errors seen	A1	
	Total:	3	
(ii)	Carry out evaluation of $\cos^{-1} \frac{1}{3} (= 70.528)$	M1	M1 for $\cos^{-1}\left(\frac{1}{R}\right)$
	Obtain correct answer 118.7	A1	
	Carry out correct method to find second answer	M1	
	Obtain 337.7 and no others between 0 and 360	A1	
	Total:	4	

92. 9709_w17_MS_21 Q: 2

	Answer	Mark	Partial Marks
••	Use $\cos 2\theta = 2\cos^2 \theta - 1$	B1	
	Obtain $10\cos^3\theta = 4$ or equivalent	B1	
	Use correct process to find at least one value of θ from equation of form $k_1 \cos^3 \theta = k_2$	M1	
	Obtain 42.5	A1	
	Obtain 317.5 and no others between 0 and 360	A1	
		5	

93. $9709_s16_MS_21$ Q: 2

Use $\cot \theta = 1 \div \tan \theta$	B1	
Form equation involving $\tan \theta$ only and with no denominators involving θ	M1	
Obtain $\tan^2 \theta = \frac{2}{7}$	A1	
Obtain 28.1	A1	
Obtain 151.9	A1	[5]
Allow other valid methods		

94. $9709_s16_MS_22$ Q: 4

(i)	State $\sin\theta\cos60 + \cos\theta\sin60 + \sin\theta\cos120 + \cos\theta\sin120$	*B1	
	Use $\sin 60 = \sin 120 = \frac{1}{2}\sqrt{3}$ and $\cos 60 = \frac{1}{2}$, $\cos 120 = -\frac{1}{2}$	*B1	
	Confirm result $\sqrt{3}\cos\theta$, dependent on *B *B	DB1	[3]

(ii) (a)
$$\cos 45$$
 seen
State $\sqrt{\frac{3}{2}}$ or $\frac{1}{2}\sqrt{6}$ or exact equivalent, dependent *B DB1 [2]

(b) Carry out correct process to find at least one value of θ from $\cos^2 \theta = k$ M1

Obtain 40.6

Obtain 139.4

A1 [3]

95. 9709_w16_MS_21 Q: 7

((i)	Substitute $x = -3$, equate to zero and obtain $27a + 3b = 39$ or equivalent Substitute $x = -2$ and equate to 18 Obtain $8a + 2b = 6$ or equivalent Solve a relevant pair of linear equations for a and b Obtain $a = 2$ and $b = -5$	B1 M1 A1 M1 A1	[5]
(i	ii) (a)	Attempt division by $x + 3$ at least as far as $2x^2 + kx$ Obtain quotient $2x^2 - 3x + 4$ Calculate discriminant of 3-term quadratic expression, or equivalent Obtain -23 and conclude appropriately	M1 A1 M1 A1	[4]
	(b)	State $\cos y = -\frac{1}{3}$ Obtain 109.5, dependent *B Obtain -109.5 and no others between -180 and 180, dependent *B	*B1 B1 DB1	[3]

96. 9709_w16_MS_22 Q: 7

(i)	Use correct addition formula for either			
	$\cos(\theta + \frac{1}{6}\pi)$ or, after diffn, $\sin(\theta + \frac{1}{6}\pi)$	B1		Condone 'missing brackets'
	Differentiate to obtain $\frac{dy}{d\theta}$ of form			
	$k_1 \sin \theta + k_2 \cos \theta$ or $k \sin(\theta + \frac{1}{6}\pi)$	M1		
	Divide attempt at $\frac{dy}{d\theta}$ by attempt at $\frac{dx}{d\theta}$	M1		
	Obtain $\frac{-\frac{3\sqrt{3}}{2}\sin\theta - \frac{3}{2}\cos\theta}{4\cos\theta} \text{ or equivalent}$	A1		
	Simplify to obtain $-\frac{3}{8}(1+\sqrt{3}\tan\theta)$	A1	[5]	
(ii)	Identify $\theta = 0$	B1		soi
	Substitute 0 into formula for $\frac{dy}{dx}$ and take negative reciprocal	M1		be implied by $y = 1 + \frac{3\sqrt{3}}{2}$ or 3.6
	Obtain gradient of normal $\frac{8}{3}$	A1		Must be from correct (i)
	Form equation of normal through point		N	O
	$(0,1+\frac{3\sqrt{3}}{2})$	M1		
	Obtain $y = \frac{8}{3}x + 1 + \frac{3\sqrt{3}}{2}$ or equivalent	A1	[5]	

97. 9709_w16_MS_23 Q: 7

(i)	State $\frac{3}{\cos\theta} + \frac{4}{\sin\theta}$ Use identity for $\sin 2\theta$ and obtain expression of form $a\sin\theta + b\cos\theta$ Obtain $6\sin\theta + 8\cos\theta$	B1 M1 A1	[3]
(ii)	State $R = 10$, following their $a \sin \theta + b \cos \theta$ Use appropriate trigonometry to find α Obtain 53.1(3) with no errors seen	B1√ M1 A1	[3]
(iii)	Carry out correct process to find one angle between 0 and 360 Obtain 82.4 or 82.5 Carry out correct process to find second angle between 0 and 360 Obtain 351.3 and no others between 0 and 360	M1 A1 M1 A1	[4]

98. $9709_s15_MS_22$ Q: 3

(i)	Use identity $\sec^2 \theta = 1 + \tan^2 \theta$	B1	
	Solve three-term quadratic equation in $\tan \theta$	M1	
	Obtain at least $\tan \theta = \frac{5}{2}$	A1	[3]

(ii) Substitute numerical values into
$$tan(A+B)$$
 identity M1

Obtain $\frac{\frac{5}{2} + (-1)}{1 - \frac{5}{2}(-1)}$ or equivalent, following their positive answer from part (i)

A1

Obtain
$$\frac{3}{7}$$
 or exact equivalent and no other answers A1 [3]

99. 9709_w15_MS_21 Q: 3

(i)	State or imply $R = 17$		B 1	
	Use appropriate formula to find α		M1	
	Obtain 61.93	4	A1	[3]

(ii) Attempt to find at least one value of $\theta + \alpha$ M1

Obtain one correct value of θ (97.4 or 318.7)

Carry out correct method to find second answer

Obtain second correct value and no others between 0 and 360

A1 [4]

$$100.\ 9709_w15_MS_22\ Q:\ 4$$

(i) Substitute $x = -2$ and equate to zero	M1
Solve equation to confirm $a = -4$	A1 [2]

- (ii) (a) Find quadratic factor by division, inspection, identity, ... Obtain $6x^2 x 2$ A1

 Conclude (x+2)(3x-2)(2x+1) A1 [3]
 - (b) State or imply at least $\sec \theta = -2$ and attempt solution
 Obtain 120° and no others in range

 M1
 [2]

101. 9709_w<mark>15</mark>_MS_23 Q: 6

(i)	State or imply $R = 3$	B 1	
	Use appropriate formula to find α	M1	
	Obtain 41.81°	A1	[3]

- (ii) (a) Attempt to find one correct value of $\theta + \alpha$ M1

 Obtain one correct value (30.7 or 245.6) of θ A1

 Carry out correct method to find second answer

 Obtain second correct answer and no others in range

 A1 [4]
 - (b) State greatest value is 13, following their value of RState least value is 7, following their value of RB1
 [2]

102. 9709_s20_MS_21 Q: 3

State $\frac{dx}{dt} = e^t + 2e^{-t}$, $\frac{dy}{dt} = 6e^{2t}$	B1
Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ either in terms of t or after substitution of $t = 0$	*M1
Obtain gradient of tangent is 2	A1
Attempt equation of tangent with numerical gradient and coordinates	DM1
Obtain $y = 2x + 6$ or equivalent	A1
	5

103. 9709_s20_MS_22 Q: 2

Differentiate using product rule to obtain $ae^{\frac{1}{2}x} + bxe^{\frac{1}{2}x}$	0.	*M1
Obtain correct $5e^{\frac{1}{4}x} + \frac{5}{2}xe^{\frac{1}{4}x}$ OE	10	A1
Equate first derivative to zero and solve for x		DM1
Obtain x-coordinate –2		A1
Obtain y-coordinate -10e ⁻¹		A1
	70,	5

 $104.\ 9709_s20_MS_22\ Q{:}\ 3$

Differentiate $\cos 3x$ to obtain $-3\sin 3x$	B1
Differentiate $5\sin y$ to obtain $5\cos y \frac{dy}{dx}$	В1
Obtain $-3\sin 3x + 5\cos y \frac{dy}{dx} = 0$ OE	В1
Substitute x and y values to find value of first derivative	M1
Obtain $\frac{3}{5}$	A1
	5

105. 9709_w20_MS_21 Q: 7

	Answer	Mark	Partial Marks
(a)	Obtain $\frac{dx}{dt} = 3 - 2\cos t$ and $\frac{dy}{dt} = 5 - 4\sin t$	B1	
	Equate expression for $\frac{dy}{dx}$ to $\frac{5}{2}$	M1	
	Obtain $10\cos t - 8\sin t = 5$	A1	AG – sufficient working to be shown.
		3	
(b)	State $R = \sqrt{164}$ or exact equivalent	B1	
	Use appropriate trigonometry to find $lpha$	M1	
	Obtain 0.675 with no errors seen	A1	AWRT
		3	
(c)	Carry out correct method to find one value of t	M1	Must be using the result from (b)
	Obtain 0.495	A1	AWRT
	Carry out correct method to find second value of t	M1	
	Obtain 4.44	A1	AWRT
		4	. 0

 $106.\ 9709_w20_MS_22\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(a)	Use product rule to differentiate $2e^{2x}y$	M1	Must be in the form $k_1 y e^{2x} + k_2 e^{2x} \frac{dy}{dx}$
	Obtain $4e^{2x}y + 2e^{2x}\frac{dy}{dx}$	A1	
	Differentiate $-y^3$ to obtain $-3y^2 \frac{dy}{dx}$	B1	
	Obtain $\frac{dy}{dx} = \frac{4e^{2x}y}{3y^2 - 2e^{2x}}$	A1	AG
	10.0	4	
(b)	Substitute 0 and 2 to find gradient of tangent	M1	
	Attempt to find equation of tangent through (0, 2) with numerical gradient	M1	
	Obtain $4x-5y+10=0$ or equivalent of required form	A1	
· ·		3	
(c)	Equate numerator of derivative to zero and state that at least one of e^{2x} and y cannot be zero	М1	
	Complete argument	A1	
		2	

107. 9709_m19_MS_22 Q: 7

	Answer	Mark	Partial Marks
(i)	Obtain $\frac{dx}{dt} = 2 - 2\cos 2t$	B1	
	Obtain $\frac{dy}{dt} = 5 - 2\sin 2t$	B1	
	Equate attempt at $\frac{dy}{dx}$ to 2 and rearrange	M1	
	Confirm equation $2\sin 2t - 4\cos 2t = 1$	A1	Answer given; necessary detail needed
		4	
(ii)	State $R = \sqrt{20}$ or 4.47	B1	
	Use appropriate trigonometry to find α	M1	
	Obtain $\alpha = 1.107$ with no errors seen	A1	
	Carry out correct method to find value of t	M1	
	Obtain $t = 0.666$	A1	
	Substitute value of t between 0 and $\frac{1}{2}\pi$ into expressions for x and y	M1	
	Obtain $x = 0.361$, $y = 3.57$	A1	
		7	

108. 9709_s19_MS_21 Q: 3

Answer	Mark	Partial Marks
Use product rule to differentiate $x^2 \ln y$	M1	Allow M1 for $2x \ln y + x^2 y^{-1}$ oe
Obtain $2x \ln y + x^2 \times \frac{1}{y} \times \frac{dy}{dx}$	A1	
Obtain $+2 + 5\frac{dy}{dx} = 0$	B1	B1 for $+2 + 5\frac{dy}{dx} = 0$, maybe implied by later work
Substitute $x = 3$ and $y = 1$ to find value of their $\frac{dy}{dx}$	*M1	Dependent on at least one $\frac{dy}{dx}$ present
Obtain $\frac{dy}{dx} = -\frac{2}{14}$	A1	
Attempt equation of line through (3, 1) with gradient of normal	DM1	Allow one sign error
Obtain $y = 7x - 20$ or equivalent unsimplified	A1	FT on their perpendicular gradient
1.0	7	

 $109.\ 9709_s19_MS_22\ Q:\ 3$

Answer	Mark	Partial Marks
Use quotient rule to find first derivative or equivalent	*M1	
Obtain $\frac{dy}{dx} = \frac{3 \ln x - 3x \times \frac{1}{x}}{(\ln x)^2}$ or equivalent	A1	Condone lack of brackets in denominator unless specifically simplified to $2 \ln x$
Equate first derivative to zero and attempt value of x from $\ln x = k$ oe	DM1	Must get as far as $x =$
Obtain $x = e$	A1	Allow e ¹
Obtain $y = 3e$	A1	Allow 3 e ¹ SC1: If $3 \ln x - 3x \times \frac{1}{x} = 0$ seen with no reference to $\frac{dy}{dx}$, then allow M1 A1 then following marks SC2: If denominator incorrect and numerator correct/reversed/added then max marks M0A0M1A1A1 SC3: If numerator reversed then max marks M1A0M1A1A1
	5	

 $110.\ 9709_w19_MS_21\ Q:\ 3$

Answer	Mark	Partial Marks
Use quotient rule (or product rule) to find first derivative	*M1	Must have correct u and v
Obtain $-\frac{1}{x(1+\ln x)^2}$ or (unsimplified) equivalent	Al	
Use $y = 4$ to obtain $\ln x = -\frac{1}{2}$ or exact equivalent for x	B1	
Substitute for x in their first derivative	DM1	
Obtain $-4e^{\frac{1}{2}}$ or exact equivalent	A1	Must be simplified to contain a single exponential term
	5	

111. 9709_w19_MS_21 Q: 7

	Answer	Mark	Partial Marks
(i)	Obtain $-4y - 4x \frac{dy}{dx}$ from use of the product rule	B1	
	Differentiate $-2y^2$ to obtain $-4y\frac{dy}{dx}$	B1	
	Obtain $2x$, = 0 with no extra terms	B1	
	Rearrange to obtain expression for $\frac{dy}{dx}$ and substitute $x = -1$, $y = 2$	M1	
	Obtain $\frac{dy}{dx} = \frac{2x - 4y}{4x + 4y}$ OE and hence $-\frac{5}{2}$	A1	
		5	
(ii)	Equate numerator of derivative to zero to produce equation in x and y	M1	
	Substitute into equation of curve to produce equation in x or y	M1	
	Obtain $-6y^2 = 1$ or $-\frac{3}{2}x^2 = 1$ OE and conclude	A1	
		3	
(iii)	Use denominator of derivative equated to zero with equation of curve to produce equation in \boldsymbol{x}	M1	70
	Obtain $3x^2 = 1$ and hence $x = \pm \frac{1}{\sqrt{3}}$	AI	OE
		2	

 $112.\ 9709_w19_MS_22\ Q:\ 5$

Answer	Mark	Partial Marks
Differentiate using the product rule	*M1	Must have u and v correct in a correct formula with $\frac{du}{dx} = 2$ and $\frac{dv}{dx} = me^{-\frac{1}{2}x}$
Obtain correct $2e^{-\frac{1}{2}x} - \frac{1}{2}e^{-\frac{1}{2}x}(2x+5)$	A1	OE
Equate first derivative to zero and solve for x	DM1	Solution must come from linear terms
Obtain $x = -\frac{1}{2}$ only	A1	
Obtain $4e^{\frac{1}{4}}$ or exact equivalent only	A1	
	5	

 $113.\ 9709_w19_MS_22\ Q{:}\ 7$

	Answer	Mark	Partial Marks
(i)	Obtain $\frac{dx}{d\theta} = 6\cos 2\theta$	B1	
	Obtain $\frac{dy}{d\theta} = 4\sec^2 2\theta$	B1	
	Divide $\frac{dy}{d\theta}$ by $\frac{dx}{d\theta}$ with θ equated to $\frac{1}{6}\pi$	M1	
	Obtain 16/3 or exact equivalent	A1	Allow FT on A1 if $\frac{dv}{d\theta} = 3\cos 2\theta$ and $\frac{dy}{d\theta} = 2\sec^2 2\theta$
		4	
(ii)	Equate expression for $\frac{dy}{dx}$ to 2 with only one trigonometry ratio used	*M1	Either $\cos 2\theta$ or $\sec 2\theta$
	Obtain $\cos^3 2\theta = \frac{1}{3}$ or $\sec^3 = 3$	A1	
	Attempt correct steps to find a value of θ from $\cos^3 2\theta = m$, $0 < m < 1$	DM1	
	Obtain $\theta = 0.402$ and no others within the range	A1	AWRT SC: Allow FT if $\frac{dx}{d\theta} = 3\cos 2\theta$ and $\frac{dy}{d\theta} = 2\sec^2 2\theta$
		4	20

$114.\ 9709_m18_MS_22\ Q:\ 2$

 Answer	Mark	Partial Marks
Differentiate using product rule	*M1	Obtaining form $k_1 \sin \frac{1}{2}x + k_2 x \cos \frac{1}{2}x$
Obtain correct $4\sin\frac{1}{2}x + 2x\cos\frac{1}{2}x$ or unsimplified equivalent	A1	
Attempt equation of tangent with numerical value for gradient	DM1	Dependent on first M1
Obtain $y = 4x$	A1	
	4	

115. 9709_m18_MS_22 Q: 7

	Answer	Mark	Partial Marks
(i)	Obtain expression for $\frac{dy}{dx}$ with numerator quadratic, denominator linear	M1	Or equivalent where separate derivatives evaluated first when $t = 3$
	$Obtain \frac{3t^2 - 6t}{2t + 4}$	A1	
	Identify $t = 3$ at P	B1	
	Obtain $\frac{9}{10}$ or equivalent	A1	
		4	
(ii)	Equate first derivative to zero and obtain non-zero value of t	M1	
	Obtain $t=2$	A1	
	Substitute to obtain (12, -4)	A1	
		3	
(iii)	Equate expression for gradient to m and rearrange to confirm $3t^2 - (2m+6)t - 4m = 0$	B1	AG; necessary detail needed
	Attempt solution of quadratic inequality or equation resulting from discriminant	M1	70)
	Obtain critical values $-\sqrt{72} - 9$ and $\sqrt{72} - 9$	A1	Or exact equivalents
	Conclude $m \leqslant -\sqrt{72} - 9$, $m \geqslant \sqrt{72} - 9$	A1	Or exact equivalents
		4	

 $116.\ 9709_s18_MS_21\ Q{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Obtain $\frac{dx}{d\theta} = -4\sin 2\theta + 3\cos \theta$	B1	B1 may be implied
	Use $\frac{dy}{dt} = \frac{dy}{d\theta} / \frac{dx}{d\theta}$ in terms of θ or with 1 already substituted	M1	
	Obtain or imply $\frac{dy}{dx} = \frac{-3\sin\theta}{-4\sin2\theta + 3\cos\theta}$	A1	
	Substitute 1 to obtain 1.25	A1	Or greater accuracy 1.252013
		4	
(ii)	Equate denominator of first derivative to zero	M1	
	Use $\sin 2\theta = 2\sin \theta \cos \theta$	A1	
	Obtain $\sin \theta = \frac{3}{8}$	A1	
		3	

 $117.\ 9709_s18_MS_22\ Q:\ 2$

	Answer	Mark	Partial Marks
(i)	Differentiate to obtain form $\frac{k_1}{2x+9} - \frac{k_2}{x}$	M1	
	Obtain correct $\frac{6}{2x+9} - \frac{2}{x}$	A1	
	Equate first derivative to zero and attempt solution to $x =$	M1	Dependent on previous M1
	Obtain $x = 9$	A1	
		4	
(ii)	Use appropriate method for determining nature of stationary point	M1	Second derivative or gradient or value of y
	Conclude minimum with no errors seen	A1	
		2	

 $118.\ 9709_s18_MS_22\ Q{:}\ 5$

Answer	Mark	Partial Marks
Use product rule to differentiate first term obtaining form $k_1 y^2 \frac{dy}{dx} \sin 2x + k_2 y^3 \cos 2x$	M1	0
Obtain correct $3y^2 \frac{dy}{dx} \sin 2x + 2y^3 \cos 2x$	Al	
State $3y^2 \frac{dy}{dx} \sin 2x + 2y^3 \cos 2x + 4 \frac{dy}{dx} = 0$	A1	
Identify $x = 0$, $y = 2$ as relevant point	B1	
Find equation of tangent through (0, 2) with numerical gradient	M1	Dependent on previous M1
Obtain $y = -4x + 2$ or equivalent	A1	
7	6	

119. 9709_w18_MS_21 Q: 5

	Answer	Mark	Partial Marks
(i)	Use product rule to differentiate y obtaining $k_1e^{2t} + k_2te^{2t}$	M1	
	Obtain correct $3e^{2t} + 6te^{2t}$	A1	
	State derivative of x is $1 + \frac{1}{t+1}$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ with $t = 0$ to find gradient	M1	
	Obtain $y = \frac{3}{2}x$ or equivalent	A1	
		5	
(ii)	Equate $\frac{dy}{dx}$ or $\frac{dy}{dt}$ to zero and solve for t	M1	Allow full marks if correct solution is obtained but $\frac{dx}{dt}$ is incorrect
	Obtain $t = -\frac{1}{2}$	A1	
	Obtain $x = -1.19$	A1	
	Obtain $y = -0.55$	A1	
		4	

 $120.\ 9709_w18_MS_21\ Q{:}\ 7$

	Answer	Mark	Partial Marks
(i)	State expression of form $k_1 \cos 2x + k_2 \sin 2x$	M1	
	State correct $2\cos 2x - 6\sin 2x$	A1	
		2	
(ii)	State $R = \sqrt{40}$ or 6.324	B1 FT	Following their derivative
	Use appropriate trigonometry to find α	M1	
	Obtain 1.249	A1	Allow α in degrees at this point
	Equate their $R\cos(2x+\alpha)$ to 3 and find $\cos^{-1}(3 \neq R)$	*M1	
	Carry out correct process to find one value of α	M1	Dependent on *M1, allow for -0.086
	Obtain 1.979	A1	
	Carry out correct process to find second value of α within the range	M1	Dependent on *M1
_	Obtain 3.055	A1	Allow 3.056
		8	

 $121.\ 9709_w18_MS_22\ Q:\ 3$

 Answer	Mark	Partial Marks
Differentiate to obtain $10\cos 2x$	В1	
Differentiate to obtain -6sec ² 2x	B1	
Equate first derivative to zero and find value for $\cos^3 2x$	M1	
Use correct process for finding x from $\cos^3 2x = k$	M1	
Obtain 0.284 nfww	A1	Or greater accuracy
	5	

 $122.\ 9709_w18_MS_22\ Q:\ 4$

 Answer	Mark	Partial Marks
Obtain $6ye^{2x} + 3e^{2x} \frac{dy}{dx}$ as derivative of $3ye^{2x}$	B1	Allow unsimplified
Obtain $2y \frac{dy}{dx}$ as derivative of y^2	B1	70
Obtain 4 as a derivative of $4x$ and zero as a derivative of 10	B1	Dependent B mark, must have at least one of the two previous B marks
Substitute 0 and 2 to find gradient of curve	M1	Dependent on at least one B1
Obtain -\frac{16}{7} \text{ or -2.29}	A1	Allow greater accuracy
	5	

 $123.\ 9709_m17_MS_22\ Q:\ 4$

	Answer	Mark	Partial Marks
	Use product rule for derivative of $x^2 \sin y$	M1	
	Obtain $2x\sin y + x^2\cos y \frac{dy}{dx}$	A1	
	Obtain $-3\sin 3y \frac{dy}{dx}$ as derivative of $\cos 3y$	B1	
	Obtain $2x \sin y + x^2 \cos y \frac{dy}{dx} - 3\sin 3y \frac{dy}{dx} = 0$	A1	
**	Substitute $x = 2$, $y = \frac{1}{2}\pi$ to find value of $\frac{dy}{dx}$	M1	dep $\frac{dy}{dx}$ occurring at least once
	Obtain $-\frac{4}{3}$	A1	from correct work only
	Total:	6	

 $124.\ 9709_s17_MS_21\ Q:\ 7$

	Answer	Mark	Partial Marks
(i)	Differentiate x and y and form $\frac{dy}{dx}$	M1	
	Obtain $\frac{4t^3 - 6t^2 + 8t - 12}{3t^2 + 6}$	A1	First 2 marks may be implied by an attempt at division
	Carry out division at least as far as kt or equivalent	M1	For M1, it must be division by a quadratic factor. Allow attempt at factorisation with same conditions as for division
	Obtain $\frac{4}{3}t$	A1	
	Obtain $\frac{4}{3}t-2$ with complete division shown and no errors seen	A1	
	Total:	5	
(ii)	State or imply gradient of straight line is $\frac{1}{2}$	B1	Allow B1 if $y = \frac{1}{2}x + \frac{9}{2}$ is seen
	Attempt value of t from their $\frac{dy}{dx}$ = their negative reciprocal of gradient of line	М1	. Oa
	Obtain $t = 0$ and hence $(1,5)$	A1	
	Total:	3	

 $125.\ 9709_s17_MS_21\ Q:\ 8$

	Answer	Mark	Partial Marks
(i)	Apply product rule to find first derivative	*M1	
	Obtain $6x\ln\left(\frac{1}{6}x\right) + 3x$ or equivalent	A1	Allow unsimplified for A1
	Identify $x = 6$ at P	B1	
	Substitute their value of x at P into attempt at first derivative	DM1	dep *M
	Obtain 18	A1	
	Total:	5	
(ii)	Equate their first derivative to zero and attempt solution of equation of form $k\ln\left(\frac{1}{6}x\right) + m = 0$	*M1	
	Obtain x-coordinate of form $a_i e^{a_i}$	DM1	dep *M
	Obtain $x = 6e^{-\frac{1}{2}}$ or exact equivalent	A1	
	Substitute exact x-value in the form $a_1e^{a_2}$ and attempt simplification to remove ln	M1	
	Obtain -54e ⁻¹ or exact equivalent	A1	
	Total:	5	

126. 9709_s17_MS_22 Q: 4

Answer	Mark	Partial Marks
Use quotient rule (or product rule) to find first derivative	M1	
Obtain $\frac{8xe^{4x} + 10e^{4x}}{(2x+3)^2}$ or equivalent	A1	
Substitute $x = 0$ to obtain gradient $\frac{10}{9}$	A1	
Form equation of tangent through $(0,\frac{1}{3})$ with numerical gradient	M1	
Obtain $10x - 9y + 3 = 0$	A1	
Total:	5	

 $127.\ 9709_s17_MS_22\ Q{:}\ 8$

	Answer	Mark	Partial Marks
(i)	Obtain $\frac{dx}{dt} = 2\sin 2t$	B1	
	Obtain $\frac{dy}{dt} = 6\sin^2 t \cos t - 9\cos^2 t \sin t$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ for their first derivatives	M1	
	Use identity $\sin 2t = 2\sin t \cos t$	B1	
	Simplify to obtain $\frac{3}{2}\sin t - \frac{9}{4}\cos t$ with necessary detail present	A1	
	Total:	5	
(ii)	Equate $\frac{dy}{dx}$ to zero and obtain $\tan t = k$	M1	
	Obtain $\tan t = \frac{3}{2}$ or equivalent	A1	
	Substitute value of t to obtain coordinates (2.38, 2.66)	A1	
	Total:	3	
(iii)	Identify $t = \frac{1}{4}\pi$	B1	
	Substitute to obtain exact value for gradient of the normal	M1	
	Obtain gradient $\frac{4}{3}\sqrt{2}$, $\frac{8}{3\sqrt{2}}$ or similarly simplified exact equivalent	A1	
	Total:	3	

128. 9709_w17_MS_21 Q: 6

	Answer	Mark	Partial Marks
(i)	$Obtain \frac{dx}{dt} = 4e^{2t} + 4e^{t}$	B1	
	Use product rule to find $\frac{dy}{dt}$	M1	
	Obtain $\frac{dy}{dx} = \frac{5e^{2t} + 10te^{2t}}{4e^{2t} + 4e^t}$ or equivalent	A1	
	Equate first derivative of the form $\frac{ae^{2t} + bte^{2t}}{ce^{2t} + de^{t}}$	M1	
	to zero and solve to find t		
	Obtain $t = -\frac{1}{2}$ from completely correct work	A1	0.
	Obtain (3.16, –0.92)	A1	
		6	
(ii)	Identify $t = 0$	B1	
	Substitute $t = 0$ in expression for first derivative and find negative reciprocal	M1	
	Obtain $-\frac{8}{5}$ or equivalent	A1	
		3	

 $129.\ 9709_w17_MS_22\ Q:\ 3$

	Answer	Mark	Partial Marks
	Differentiate to obtain form $k_1 \sec^2 \frac{1}{2} x + k_2 \cos \frac{1}{2} x$	M1	If a factor of 0.5 is missed, can still get 5/6, penalise at first A1
	Obtain $\frac{1}{2}\sec^2\frac{1}{2}x + \frac{3}{2}\cos\frac{1}{2}x$	A1	
	Equate first derivative to zero and produce $\cos^3 \frac{1}{2} x = k_3$	*M1	
	Use correct process to find one value of x	DM1	Dep on *M, allow for obtaining 1.609, 92.2° or 268°
	Obtain $x = 4.67$	A1	Allow $x = 4.67$ or better for A1
	Obtain $y = 1.12$	A1	Allow $y = 1.12$ from $x = 4.66$ but nothing else
		6	

130. 9709_w17_MS_22 Q: 7

	Answer	Mark	Partial Marks
(i)	Obtain $4y + 4x \frac{dy}{dx}$ as derivative of $4xy$	B1	
	Obtain $4y \frac{dy}{dx}$ as derivative of $2y^2$	B1	
	State $2x + 4y + 4x \frac{dy}{dx} + 4y \frac{dy}{dx} = 0$	B1	3rd B1 may be implied by later work
	Substitute $x = -1$, $y = 3$ to find gradient of line	*M1	dep at least one B1
	Form equation of tangent through (-1, 3) with numerical gradient	DM1	dep *M
	Obtain $5x + 4y - 7 = 0$ or equivalent of required form	A1	Allow any 3 term integer form for A1
		6	10
(ii)	Substitute $\frac{dy}{dx} = \frac{1}{2}$ to find relation between x and y	*M1	dep at least one B1 in part (i), must be linear
	Obtain $4x + 6y = 0$ or equivalent	A1	
	Substitute for x or y in equation of curve	DM1	dep on *M
	Obtain $-\frac{7}{4}y^2 = 7$ or $-\frac{7}{9}x^2 = 7$ or equivalent and conclude appropriately	A1	
		4	

131. 9709_m16_MS_22 Q: 6

(i)	Use product rule to obtain expression of form $k_1 e^{-x} \sin 2x + k_2 e^{-x} \cos 2x$	M1		
	Obtain correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$	A1		
	Substitute $x = 0$ in first derivative to obtain equation of form $y = mx$	M1		
	Obtain $y = 6x$ or equivalent with no errors in solution	A1	[4]	

(ii)	Equate first derivative to zero and obtain $\tan 2x = k$	M1*		
	Carry out correct process to find value of x	dep M1*		
	Obtain $x = 0.554$	A1		
	Obtain $y = 1.543$	A1	[4]	

132. 9709_m16_MS_22 Q: 7

(i) State
$$3y^2 \frac{dy}{dx}$$
 as derivative of y^3

Equate derivative of left-hand side to zero and solve for
$$\frac{dy}{dx}$$
 M1

Obtain
$$\frac{dy}{dx} = -\frac{6x^2}{3y^2}$$
 or equivalent

Observe
$$x^2$$
 and y^2 never negative and conclude appropriately A1 [4]

(ii) Equate first derivative to
$$-2$$
 and rearrange to $y^2 = x^2$ or equivalent

Substitute in original equation to obtain at least one equation in x^3 or y^3

M1

Obtain $3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$

Obtain $(2,2)$

A1

Obtain $(\sqrt[3]{24}, -\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others

A1 [5]

Obtain first derivative of form
$$k_1 e^{4x} + \frac{k_2}{2x+3}$$
 M1

Obtain correct
$$12e^{4x} - \frac{12}{2x+3}$$

Obtain
$$(\sqrt[3]{24}, -\sqrt[3]{24})$$
 or $(2.88, -2.88)$ and no others

A1 [5]

9709_s16_MS_21 Q: 1

Obtain first derivative of form $k_1e^{4x} + \frac{k_2}{2x+3}$

M1

Obtain correct $12e^{4x} - \frac{12}{2x+3}$

Obtain 8

A1 [3]

9709_s16_MS_21 Q: 5

(i) Obtain $\frac{dx}{d\theta} = 2\sec^2\theta$ and $\frac{dy}{d\theta} = 6\cos 2\theta$

Use $\cos 2\theta = 2\cos^2\theta - 1$ or equivalent

Form expression for $\frac{dy}{dx}$ in terms of $\cos \theta$

Confirm $6\cos^4\theta - 3\cos^2\theta$ with no errors seen

A1 [4]

(ii) Equate first derivative to zero and obtain at least
$$\cos\theta = \pm \frac{1}{\sqrt{2}}$$
 B1

Obtain $\theta = \frac{1}{4}\pi$ or equivalent

Obtain (2, 3)

B1

[3]

(iii) State or imply
$$\theta = \frac{1}{3}\pi$$
 or equivalent Obtain $-\frac{3}{8}$ or equivalent only B1 [2]

 $135.\ 9709_s16_MS_22\ Q\hbox{:}\ 7$

(i)	State $\frac{dx}{dt} = \sin t$ and $\frac{dy}{dt} = -6\sin 2t$	B 1	
	Use $\sin 2t = 2\sin t \cos t$	B1	
	Form expression for $\frac{dy}{dx}$ in terms of t	M1	
	Confirm $-12\cos t$	A1	[4]
		-	
(ii)	Identify $\frac{1}{2}\pi$ as value of t	B 1	
	Obtain $(2, -2)$	B1	[2]
(iii)	Identify $\cos 2t = -\frac{1}{3}$	B 1	
	Attempt to find value of t (or of $\cos t$) for at least one of the two points	M 1	
	Obtain 0.955 (or $\frac{1}{\sqrt{3}}$) or 2.186 (or $-\frac{1}{\sqrt{3}}$)	A1	
	Obtain $-\frac{12}{\sqrt{3}}$ or $-4\sqrt{3}$ or -6.93 and $\frac{12}{\sqrt{3}}$ or $4\sqrt{3}$ or 6.93	A1	[4]

 $136.\ 9709_w16_MS_21\ Q:\ 3$

Differentiate to obtain $4\cos 2x + 10\sin 2x$	B1	
Equate first derivative to zero and arrange to $\tan 2x =$	*M1	
Obtain $\tan 2x = -0.4$	A1	
Carry out correct method for finding at least one value of x , dependent *M	DM1	
Obtain $x = 1.38$	A1	
Obtain $x = 2.95$ and no others between 0 and π	A1	[6]

 $137.\ 9709_w16_MS_21\ Q{:}\ 6$

Differentiate $4xy$ to obtain $4y + 4x \frac{dy}{dx}$	B1	
Differentiate y^2 to obtain $2y \frac{dy}{dx}$	B1	
Equate attempt of derivative of left-hand side to zero	M1	
Substitute (1, 3) to find numerical value of derivative	M1	
Obtain $-\frac{18}{10}$ or $-\frac{9}{5}$	A1	
Obtain $\frac{10}{18}$ or $\frac{5}{9}$ as gradient of normal, following their numerical value of derivative	ve A1√	
Form equation of normal at (1, 3)	M1	
Obtain $5x-9y+22=0$ or equivalent of requested form	A1	[8]

 $138.\ 9709_s15_MS_21\ Q:\ 3$

Differentiate to obtain form $p\cos x + q\sin 2x$ or equivalent	M1	
Obtain correct $6\cos x + 4\sin 2x$ or equivalent	A1	
Substitute $\frac{1}{6}\pi$ to obtain derivative equal to $5\sqrt{3}$ or 8.66	A1	
Form equation of tangent (not normal) using numerical value of gradient obtained by differentiation	M1	
Obtain $y = 8.66x - 2.53$ cao	A1	[5]

139. 9709 s15 MS 21 Q: 7

(i) Obtain
$$3y^2 \frac{dy}{dx}$$
 as derivative of y^3

Obtain
$$4y + 4x \frac{dy}{dx}$$
 as derivative of $4xy$

Equate derivative of left-hand side to zero and solve for $\frac{dy}{dx}$, must be from

implicit differentiation M1

Confirm given answer
$$\frac{dy}{dx} = -\frac{4y}{3y^2 + 4x}$$
 correctly A1 [4]

(ii) State or imply
$$y = 0$$
 B1
Substitute in equation of curve and show contradiction B1 [2]

(iii) State or imply
$$3y^2 + 4x = 0$$
 B1

Eliminate one variable from equation of curve using $3y^2 + 4x = 0$

Obtain $y = -2$

Obtain $x = -3$

A1

[4]

140. 9709 w15 MS 21 Q: 2

Use quotient rule or, after adjustment, product rule 3x-15-3x-1

Obtain
$$\frac{3x-15-3x-1}{(x-5)^2}$$
 or equivalent

Equate first derivative to -4 and solve for x

Obtain x-coordinates 3 and 7 or one correct pair of coordinates

A1

Obtain y-coordinates -5 and 11 respectively or other correct pair of coordinates

A1

[5]

[5]

[3]

A1

 $141.\ 9709_w15_MS_21\ Q:\ 7$

(i)	Obtain $12 \sin t \cos t$ or equivalent for $\frac{dx}{dt}$	B 1
	Obtain $4\cos 2t - 6\sin 2t$ or equivalent for $\frac{dy}{dt}$	B1
	Obtain expression for $\frac{dy}{dx}$ in terms of t	M1
	Use $2\sin t \cos t = \sin 2t$	A1

Confirm given answer $\frac{dy}{dx} = \frac{2}{3} \cot 2t - 1$ with no errors seen

(ii) State or imply
$$\tan 2t = \frac{2}{3}$$

Obtain $t = 0.294$

Obtain $t = 1.865$

B1

[3]

(iii) Attempt solution of $2 \sin 2t + 3 \cos 2t = 0$ at least as far as $\tan 2t = ...$ M1 Obtain $\tan 2t = -\frac{3}{2}$ or equivalent Substitute to obtain $-\frac{13}{9}$ **A1** [3]

 $142.\ 9709_w15_MS_22\ Q\hbox{:}\ 5$

(i)	Use product rule to obtain form $k_1e^{-3x} + k_2xe^{-3x}$	M1	
	Obtain correct $4e^{-3x} - 12xe^{-3x}$	A1	
	Obtain $x = \frac{1}{3}$ or 0.333 or better and no other	A1	[3]
(ii)	Use quotient rule or equivalent	M1*	
	Obtain correct numerator $8x(x+1)-4x^2$ or equivalent	A1	
	Equate numerator to zero and solve to find at least one value	M1 dep	
	Obtain $x = -2$	A1	
	Obtain $x = 0$	A1	[5]

143. 9709 w15 MS 22 Q: 6

(i)	<u>Either</u>	Obtain $\frac{\mathrm{d}x}{\mathrm{d}t} = -3\sin t$	B1
-----	---------------	---	----

Obtain
$$\frac{dy}{dt} = -2\sin(t - \frac{1}{6}\pi)$$
 B1

Use
$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

Expand
$$-2\sin(t-\frac{1}{6}\pi)$$
 to obtain $k_1\sin t + k_2\cos t$ M1

Confirm given result
$$\frac{1}{3}(\sqrt{3} - \cot t)$$
 correctly

$$\underline{\text{Or}}$$
 Obtain $\frac{\mathrm{d}x}{\mathrm{d}t} = -3\sin t$ **B1**

Expand y to obtain
$$k_3 \cos t + k_4 \sin t$$
 M1

Obtain
$$\frac{dy}{dt} = -\sqrt{3} \sin t + \cos t$$
 or equivalent

Use
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$$

Confirm given result
$$\frac{1}{3}(\sqrt{3} - \cot t)$$
 correctly A1 [5]

(ii) Identify value of
$$t$$
 as $\frac{1}{2}\pi$ only

.dient Obtain gradient at relevant point as $\frac{1}{3}\sqrt{3}$ or 0.577 or better **B**1 Form equation of tangent through (0, 1), using their gradient **M**1

Obtain
$$y = \frac{1}{3}\sqrt{3}x + 1$$
 or equivalent

A1 [4]

144. 9709 w15 MS 23 Q: 3

Obtain
$$\frac{dx}{dt} = e^t + (t+1)e^t$$
 or equivalent

Obtain
$$\frac{\mathrm{d}y}{\mathrm{d}t} = t(t+4)^{-\frac{1}{2}}$$

Substitute t = 0 and divide to obtain gradient of tangent **M1**

Obtain $\frac{3}{4}$ following their first derivatives A1

Form equation of tangent through (1,12) **M1**

Obtain 3x-4y+45=0 or equivalent of required form A1 [6]

 $145.\ 9709_w15_MS_23\ Q\hbox{:}\ 7$

(i)	Use quotient rule or equivalent to find first derivative	M1	
	Obtain $\frac{2\cos 2x(\cos x+1)+\sin 2x\sin x}{(\cos x+1)^2}$ or equivalent	A1	
	Use at least one of $\cos 2x = 2\cos^2 x - 1$ and $2x = 2\sin x \cos x$ Express first derivative in terms of $\cos x$ only	B1 M1	
	Obtain $\frac{2\cos^3 x + 4\cos^2 x - 2}{(\cos x + 1)^2}$ or equivalent	A1	
	Factorise numerator or divide numerator by $(\cos x + 1)$ or equivalent	M1	
	Confirm given answer $\frac{2(\cos^2 x + \cos x - 1)}{\cos x + 1}$ correctly	A1	[7]
(ii)	Use quadratic formula or equivalent to find value of $\cos x$ Obtain x-coordinate 0.905 Obtain x-coordinate -0.905 and no others in range	M1 A1 A1	[3]

146. 9709_s20_MS_21 Q: 6

(a)	Express left-hand side in terms of $\sin \theta$ and $\cos \theta$	M1
	Obtain $2\cos\theta - 2\sin\theta$	A1
	Attempt to express $a\cos\theta + b\sin\theta$ in $R\cos(\theta + \beta)$ form	M1
	Confirm $R = \sqrt{8}$ AG	A1
	Carry out necessary trigonometry and confirm $\frac{1}{4}\pi$ AG	A1
		5
(b)	Carry out correct process to find θ from $\cos\left(\theta + \frac{1}{4}\pi\right) = \frac{1}{\sqrt{8}}$	M1
	Obtain 0.424	A1
		2
(c)	Express integrand as $\sqrt{8}\cos\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or as $2\cos\frac{1}{2}x - 2\sin\frac{1}{2}x$	B1
	Integrate to obtain $k \sin\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or $k_1 \sin\frac{1}{2}x + k_2 \cos\frac{1}{2}x$	M1
	Obtain correct $2\sqrt{8}\sin\left(\frac{1}{2}x + \frac{1}{4}\pi\right)$ or $4\sin\frac{1}{2}x + 4\cos\frac{1}{2}x$	A1
		3

 $147.\ 9709_s20_MS_21\ Q{:}\ 7$

(a)	Carry out division at least as far as $3x^2 + kx$	M1
	Obtain quotient $3x^2 - 4x - 4$	A1
	Confirm remainder is 9 AG	A1
		3
(b)	Integrate to obtain at least k_1x^3 and $k_2\ln(3x+2)$ terms	*M1
	Obtain $x^3 - 2x^2 - 4x + 3\ln(3x + 2)$	A1FT
	(FT from quotient in part (a))	
	Apply limits correctly	DM1
	Apply appropriate logarithm properties correctly	Mi
	Obtain 125 + ln 64	A1
		5
(c)	State or imply $9x^3 - 6x^2 - 20x - 8 = (3x + 2)(3x^2 - 4x - 4)$ (FT from quotient in part (a))	B1FT
	Attempt to solve cubic eqn to find positive value of x (or of e^{3y})	M1
	Use logarithms to solve equation of form $e^{3y} = k$ where $k > 0$	M1
	Obtain $\frac{1}{3} \ln 2$ or exact equivalent	A1
		4

148. 9709_s20_MS_22 Q: 7

(a)	Integrate to obtain the form $k_1 \ln(2x+1) + k_2 x^2$	*M1
	Obtain correct $2\ln(2x+1) + 4x^2$	A1
	Use limits correctly and attempt rearrangement	DM1
	Confirm $a = \sqrt{2.5 - 0.5 \ln(2a + 1)}$ AG	A1
		4
(b)	Consider sign of $a - \sqrt{2.5 - 0.5 \ln(2a + 1)}$ or equivalent for 1 and 2	M1
	Obtain -0.3 and 0.6 or equivalents and justify conclusion	A1
•		2
(c)	Use iteration process correctly at least once	M1
	Obtain final answer 1.358	A1
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval [1.3575, 1.3585]	A1
		3

 $149.\ 9709_{\rm s}20_{\rm MS}_22\ {\rm Q:}\ 8$

(a)	Use at least one of $\sin 2\theta = 2\sin\theta\cos\theta$ and $\cot\theta = \frac{\cos\theta}{\sin\theta}$	B1
	Use both and conclude $6\cos^2\theta$ AG	B1
		2
(b)	Attempt solution of $\cos^2 \theta = \frac{5}{6}$ to find at least one value	M1
	Obtain 0.421	A1
	Obtain 2.72	A1
		3
(c)	Express integrand in form $a+b\cos x$	M1
	Obtain correct integrand $3 + 3\cos x$	A1
	Integrate to obtain $px + q \sin x$	*M1
	Apply limits correctly	DM1
	Obtain $\frac{3}{4}\pi + 3 - \frac{3}{\sqrt{2}}$ or exact equivalent	A1
		5

 $150.\ 9709_w20_MS_21\ Q:\ 3$

Answer	Mark	Partial Marks
Integrate to obtain form $ax + be^{-2x}$	MI	
Obtain correct $2x - \frac{1}{2}e^{-2x}$	A1	
Apply limits to obtain $\frac{5}{2} - \frac{1}{2}e^{-2}$	A1	
Attempt to find area of relevant trapezium	M1	
Obtain $\frac{5}{2} + \frac{1}{2}e^{-2}$ and subtract to obtain e^{-2} or exact equivalent	A1	
	5	

151. 9709_w20_MS_21 Q: 8

	Answer	Mark	Partial Marks
(a)	Differentiate using the quotient rule (or product rule)	*M1	
	Obtain $\frac{(2x-1)(12x^2+8)-2(4x^3+8x-4)}{(2x-1)^2}$	A1	OE
	Equate first derivative to zero and attempt solution	DM1	
	Obtain (0, 4)	A1	Allow if given separately Allow A1 if both <i>x</i> -coordinates are given, but <i>y</i> coordinates are omitted.
	Obtain $\left(\frac{3}{4}, \frac{59}{8}\right)$	A1	
		5	
(b)	Carry out division to obtain quotient of form $2x^2 + kx + m$	M1	For non-zero constants k , m
	Obtain correct quotient $2x^2 + x + \frac{9}{2}$	A1	
	Obtain remainder $\frac{1}{2}$	A1	
	Integrate to obtain at least $k_1 x^3$ and $k_2 \ln(2x-1)$ terms	M1	For non-zero constants k_1, k_2
	Obtain $\frac{2}{3}x^3 + \frac{1}{2}x^2 + \frac{9}{2}x + \frac{1}{4}\ln(2x - 1)$ as final answer	A1	Condone absence of+c and modulus signs
		5	

152. $9709_{w20}_{MS_22}$ Q: 4

	Answer	Mark	Partial Marks
(a)	Differentiate using quotient rule (or product rule)	*M1	
	Obtain $\frac{(x^2+8)-2x(x-2)}{(x^2+8)^2}$	A1	OE
	Equate first derivative to zero and attempt solution to get $x =$	DM1	
	Obtain $2\pm\sqrt{12}$ or exact equivalents	A1	
		4	
(b)	Use y values (0), $\frac{4}{44}$, $\frac{8}{108}$, $\frac{12}{204}$ or decimal equivalents	B1	Decimal equivalents need to be to at least 2 decimal places
	Use correct formula, or equivalent, with $h=4$	M1	
••	Obtain $2\left(0+2\times\frac{4}{44}+2\times\frac{8}{108}+\frac{12}{204}\right)$ or equivalent and hence 0.78	A1	
		3	

153. 9709_w20_MS_22 Q: 6

	Answer	Mark	Partial Marks
(a)	Express $\frac{8}{\cos^2(4x+1)}$ as $8\sec^2(4x+1)$	B1	SOI
	Integrate to obtain the form $a \ln(4x+1)$	M1	
	Integrate to obtain $b \tan(4x+1)$	M1	
	Obtain $2\ln(4x+1) + 2\tan(4x+1) + c$	A1	Condone use of brackets rather than modulus signs
		4	
(b)	Express $4\cos^2\frac{1}{2}x$ in the form $p+q\cos x$	M1	For constants where $pq \neq 0$
	Obtain correct 2+2cosx	A1	
	Integrate to obtain form $px + q \sin x + r \cos 2x$	*M1	For constants where $pqr \neq 0$
	Obtain correct $5x + 2\sin x - \frac{1}{2}k\cos 2x$	A1	Allow $3x + 2x$ in place of $5x$
	Apply limits correctly, equate to 10 and solve for k	DM1	
	Obtain $k = 8 - \frac{5}{2}\pi$	A1	cwo
		6	

 $154.\ 9709_m19_MS_22\ Q:\ 6$

	Answer	Mark	Partial Marks
(a)	Integrate to obtain form $k_1 \ln x + k_2 \ln(2x+1)$	M1	
	Obtain correct $2 \ln x + \ln(2x+1)$	A1	
	Use logarithm addition/subtraction property correctly	M1	
	Use logarithm power property correctly	M1	
	Confirm ln 48 with no errors seen	A1	Answer given; necessary detail needed
		5	
(b)	Use identity $\sin 2x = 2\sin x \cos x$	B1	
	State or imply $\cot x + 2\csc x = \frac{\cos x}{\sin x} + \frac{2}{\sin x}$	B1	
	Attempt to express integrand in terms of $\cos 2x$ and $\cos x$	M1	
	Obtain correct integrand $1 + \cos 2x + 4\cos x$	A1	
	Integrate to obtain at least terms $k_3 \sin 2x$ and $k_4 \sin x$	M1	
	Obtain correct $x + \frac{1}{2}\sin 2x + 4\sin x + c$	A1	
		6	

 $155.\ 9709_s19_MS_21\ Q{:}\ 4$

	Answer	Mark	Partial Marks
(a)	Use identity $\tan^2 3x = \sec^2 3x - 1$	В1	
	Integrate to obtain form $k_1 \tan 3x + k_2 x$	M1	
	Obtain correct $\frac{1}{3} \tan 3x - x + c$	A1	
		3	
(b)	Express integrand as $e^{2x} + 4e^{-x}$	B1	
	Integrate to obtain form $k_3 e^{2x} + k_4 e^{-x}$	M1	
	Obtain correct $\frac{1}{2}e^{2x} - 4e^{-x}$	A1	
	Use limits to obtain $\frac{1}{2}e^2 - 4e^{-1} + \frac{7}{2}$ or similarly simplified equivalent	A1	
		4	

 $156.\ 9709_s19_MS_22\ Q{:}\ 4$

	Answer	Mark	Partial Marks
(a)	Use identity $2\cos^2 x = 1 + \cos 2x$	В1	
	Integrate to obtain form $x + \frac{1}{2}\sin 2x$	B1	
	Integrate to obtain $-2\cos 2x$	B1	
	Apply limits correctly, retaining exactness	M1	Dependent on at least one B mark
	Obtain $4 + \frac{1}{2}\pi$ or similarly simplified equivalent	A1	
		5	
(b)	Use y values $\sqrt{\ln 3}$, $\sqrt{\ln 6}$, $\sqrt{\ln 9}$ or decimal equivalents	B1	Allow awrt 1.05, 1.34, 1.48, the correct level of accuracy may be implied by a correct answer
	Use correct formula, or equivalent, with $h=3$, and three y values	M1	
	Obtain $\frac{1}{2} \times 3 \left(\sqrt{\ln 3} + 2 \sqrt{\ln 6} + \sqrt{\ln 9} \right)$ and hence 7.81	A1	Allow greater accuracy
	0.0	3	

 $157.\ 9709_s19_MS_22\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Carry out division to obtain quotient of form $x^2 + k$	M1	
	Obtain quotient $x^2 - 4$	A1	Allow use of an identity
	Obtain remainder 4	A1	
		3	SC: If only the remainder theorem is used to obtain 4 then B1
(ii)	Integrate to obtain at least k_1x^3 and $k_2\ln(2x+1)$ terms using the result from (i)	*M1	
	Obtain correct $\frac{1}{3}x^3 - 4x + 2\ln(2x+1)$	A1	
	Apply limits and note or imply that constant k_3 can be written $\ln e^{k_3}$	DM1	
	Apply appropriate logarithm properties correctly	M1	
	Obtain ln(49e ⁻³)	A1	O.
		5	40

 $158.\ 9709_w19_MS_21\ Q:\ 2$

Answer	Mark	Partial Marks
Expand integrand to obtain $4e^{4x} - 4e^{2x} + 1$	B1	
Integrate to obtain at least two terms of form $k_1e^{4x} + k_2e^{2x} + k_3x$	*M1	
Obtain correct $e^{4x} - 2e^{2x} + x$	A1	
Apply both limits correctly to their integral	DM1	
Obtain $e^8 - 3e^4 + 2e^2 + 1$	A1	
	5	

159. 9709_w19_MS_22 Q: 6

	Answer	Mark	Partial Marks
(a)	Obtain $\frac{3}{2} \ln x$ or $\frac{3}{2} \ln(2x)$ or $\frac{3}{2} \ln(kx)$	B1	
	Use subtraction law of logarithms correctly, showing sufficient detail	М1	$\ln 216 - \ln 8 = \ln \left(\frac{216}{8}\right)$
	Use power law of logarithms correctly	M1	$n\ln(kx) = \ln(kx)^n$
	Confirm ln 27 with sufficient working and no incorrect working	A1	AG
		4	
(b)	Use appropriate identity to express integrand in form $k_1 + k_2 \cos 3x$	*M1	$k_1 \neq 0$. Allow $2 \times \frac{3}{2}x$ for $3x$
	Obtain correct 2–2cos3x	A1	
	Integrate to obtain form $k_3x + k_4 \sin 3x$	DM1	
	Obtain correct $2x - \frac{2}{3}\sin 3x$	A1	
	Use limits to obtain $\frac{1}{3}\pi - \frac{2}{3}$ or exact equivalent	A1	10)
		5	*. 0

 $160.\ 9709_m18_MS_22\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	Use y-values ln 2, ln 4, ln 6, ln 8, ln 10	B1	Or decimal equivalents
	Use correct formula, or equivalent, with $h = 2$ and five y-values	M1	
	Obtain 13.5	A1	
		3	
(ii)	Recognise integrand as $6 \ln(x+2)$	B1	
	Obtain 81 or 81.0 or 81.1	B1	
		2	

161. 9709_m18_MS_22 Q: 6

	Answer	Mark	Partial Marks
(i)	Express LHS in terms of $\sin 2x$ and $\cos 2x$ and attempt to express in terms of $\sin x$ and $\cos x$	*M1	
	Obtain correct $\frac{1}{2\sin x \cos x} + \frac{\cos^2 x - \sin^2 x}{2\sin x \cos x}$ or equivalent	A1	Perhaps using $\cos 2x = 2\cos^2 x - 1$ immediately
	Simplify as far as single terms involving x in numerator and denominator	DM1	Dependent on first M mark
	Confirm cotx	A1	AG; necessary detail needed
		4	
(ii)	Express in terms of $\sin \frac{1}{6}\pi$ and $\cos \frac{1}{6}\pi$ or $\sin \frac{1}{6}\pi$ and $\tan \frac{1}{6}\pi$	M1	
	Obtain $2+\sqrt{3}$	A1	
		2	
(iii)	State $\int \sin 2x \cot 2x dx$	B1	Condoning absence of dx
	State $\int \cos 2x dx$	B1	Condoning absence of dx
	Obtain $\frac{1}{2}\sin 2x + c$	B1	70
		3	

162. 9709_s18_MS_21 Q: 3

Answer	Mark	Partial Marks
Rewrite integrand as $4e^{2x} + 4e^{-x}$	B1	
Integrate to obtain form $k_1e^{2x} + k_2e^{-x}$ where $k_1 \neq 4, k_2 \neq 4$	М1	
Obtain correct $2e^{2x} - 4e^{-x}$	A1	
Apply limits correctly, retaining exactness	M1	Dependent on previous M1
Obtain $2e^4 - 4e^{-2} + 2$ or exact similarly simplified equivalent	A1	
	5	

163. 9709_s18_MS_21 Q: 7

	Answer	Mark	Partial Marks
(i)	State $R = \sqrt{29}$ or 5.385	B1	
	Use appropriate trigonometry to find α	M1	Allow M1 for $\tan \alpha = \pm \frac{2}{5}$ or $\pm \frac{5}{2}$ oe
	Obtain 0.3805 with no errors seen	A1	Or greater accuracy 0.3805063
		3	
(ii)	State that equation is $5\cos\theta - 2\sin\theta = 4$	B1	
	Evaluate $\cos^{-1}(k/R) - \alpha$ to find one value of θ	M1	Allow M1 from their $\sqrt{29}\cos(\theta \pm \alpha)$
	Obtain 0.353	A1	Or greater accuracy 0.35307
	Carry out correct method to find second value	M1	
	Obtain 5.17 and no extra solutions in the range	A1	Or greater accuracy 5.16909
			If working consistently in degrees, then no A marks are available, B1, M1, M1 max
		5	
(iii)	State integrand as $\frac{1}{29} \sec^2(\frac{1}{2}x + 0.3805)$	B1 FT	Following their answer from part (i), must be in the form $R\cos(\theta \pm \alpha)$
	Integrate to obtain form $k \tan(\frac{1}{2}x + \text{their } \alpha)$	M1	
	Obtain $\frac{2}{29} \tan(\frac{1}{2}x + 0.3805) + c$	A1	
		3	

 $164.\ 9709_s18_MS_22\ Q\hbox{:}\ 7$

	Answer	Mark	Partial Marks
(i)	Express $\csc^2 2x$ as $\frac{1}{4\sin^2 x \cos^2 x}$	B1	
	Attempt to express LHS in terms of $\sin x$ and $\cos x$ only	M1	Must be using correct working for M1
	Obtain $\frac{2 \times 2 \sin^2 x}{4 \sin^2 x \cos^2 x}$ or equivalent and hence $\sec^2 x$	A1	AG; necessary detail needed
		3	
(ii)	Express equation as $1 + \tan^2 x = \tan x + 21$	В1	
4	Solve 3-term quadratic equation for tan x	M1	
	Obtain $\tan x = 5$ and hence $x = 1.37$	A1	Or greater accuracy 1.3734
	Obtain $\tan x = -4$ and hence $x = 1.82$	A1	Or greater accuracy 1.8157
		4	
(iii)	Use $x = 2y + 1$	B1	
	Identify integral as of form $\int \sec^2(ay+b) dy$	M1	Condone absence of or error with dy
	Obtain $\frac{1}{2}\tan(2y+1)+c$	A1	
		3	

 $165.\ 9709_w18_MS_21\ Q:\ 2$

 Answer	Mark	Partial Marks
Integrate to obtain form $k \ln(2x+1)$	M1	
Obtain correct 3ln(2x+1)	A1	
Use subtraction law of logarithms correctly	M1	Dependent on first M1
Use power law of logarithms correctly	M1	Dependent on first M1
Confirm ln125	A1	
	5	

 $166.\ 9709_w18_MS_21\ Q:\ 6$

	Answer	Mark	Partial Marks
(i)	Use y values 2, $\sqrt{2.5}$, 1 or equivalents	В1	
	Use correct formula, or equivalent, with $h = \frac{1}{2}\pi$ and three y values	M1	
	Obtain $\frac{1}{2} \times \frac{1}{2} \pi (2 + 2\sqrt{2.5} + 1)$ or equivalent and hence 4.84	A1	70
		3	30
(ii)	State or imply volume is $\int \pi (1+3\cos^2\frac{1}{2}x) dx$	B1	Allow if π appears later; condone omission of dx
	Use appropriate identity to express integrand in form $k_1 + k_2 \cos x$	M1	*
	Obtain $\int \pi(\frac{5}{2} + \frac{3}{2}\cos x) dx$ or $\int (\frac{5}{2} + \frac{3}{2}\cos x) dx$	A1	Condone omission of dx
	Integrate to obtain $\pi(\frac{5}{2}x + \frac{3}{2}\sin x)$ or $\frac{5}{2}x + \frac{3}{2}\sin x$	A1	
	Obtain $\frac{5}{2}\pi^2$ with no errors seen	A1	
		5	

167. 9709_w18_MS_22 Q: 6

	Answer	Mark	Partial Marks
(a)	Integrate to obtain form $k \ln(3x+2)$	*M1	Condone poor use of brackets if recovered later
	Obtain correct $4\ln(3x+2)$	A1	
	Substitute limits correctly	M1	Dependent *M, must see $k \ln 20 - k \ln 5$ oe
	Apply relevant logarithm properties correctly	M1	Dependent *M, do not allow $\frac{4\ln 20}{4\ln 5}$ oe, must be using both the subtraction and power laws correctly
	Obtain ln 256 nfww	A1	AG; necessary detail needed
		5	
(b)	Use identity to obtain $4(1-\cos 2x)$ oe	B1	
	Use identity to obtain $\sec^2 2x - 1$	B1	
	Integrate to obtain form $k_1x + k_2 \sin 2x + k_3 \tan 2x$	*M1	Allow M1 if integrand contains $p\cos 2x + q\sec^2 2x$ and no other trig terms
	Obtain correct $3x - 2\sin 2x + \frac{1}{2}\tan 2x$	A1	
	Apply limits correctly retaining exactness	M1	Dependent *M, allow $\sin \frac{\pi}{3}$, $\tan \frac{\pi}{3}$
	Obtain $\frac{1}{2}\pi - \frac{1}{2}\sqrt{3}$ or exact equivalent	A1	
		6	

 $168.\ 9709_m17_MS_22\ Q{:}\ 7$

	Answer	Mark	Partial Marks
(i)	Use $cos(A+B)$ identity	M1	
	Obtain $2\cos 2x \left(\cos 2x \cdot \frac{1}{2}\sqrt{3} - \sin 2x \cdot \frac{1}{2}\right)$	A1	
	Attempt identity expressing $\cos^2 2x$ in terms of $\cos 4x$	M1	
	Attempt identity expressing $\cos 2x \sin 2x$ in terms of $\sin 4x$	M1	
	Obtain $\frac{1}{2}\sqrt{3}(1+\cos 4x) - \frac{1}{2}\sin 4x$	A1	
**	Total:	5	
(ii)	Attempt to find at least one intercept with x-axis	M1	
	Obtain $x = \frac{1}{6}\pi$ at least	A1	
	Integrate to obtain $k_4x + k_5 \sin 4x + k_6 \cos 4x$	M1	
	Obtain $\frac{1}{2}\sqrt{3}x + \frac{1}{8}\sqrt{3}\sin 4x + \frac{1}{8}\cos 4x$	A1 [↑]	following their answer to (i) of correct form
	Apply limits 0 and $\frac{1}{6}\pi$ to obtain $\left(\frac{1}{12}\sqrt{3}\right)\pi$ or exact equivalent	A1	following completely correct work
	Total:	5	

 $169.\ 9709_{\rm s}17_{\rm MS}_21\ {\rm Q:}\ 3$

Answer	Mark	Partial Marks
Integrate to obtain form $ke^{\frac{1}{4}x+3}$ where k is constant not equal to 4	M1	
Obtain correct $8e^{\frac{1}{4}x+3}$	A1	Allow unsimplified for A1
Obtain $8e^{\frac{1}{3}a+3} - 8e^3 = 835$ or equivalent	A1	
Carry out correct process to find a from equation of form $ke^{\frac{1}{2}a+3}=c$	M1	
Obtain 3.65	A1	If 3.65 seen with no actual attempt at integration, award B1 if it is thought that trial and improvement with calculator has been used.
Total:	5	

 $170.\ 9709_s17_MS_21\ Q:\ 6$

	Answer	Mark	Partial Marks
(i)	State or imply correct y-values 0, $\tan \frac{1}{6}\pi$, $\tan \frac{2}{6}\pi$	B1	Some candidates have their calculator in degree mode when working out $\tan \frac{\pi}{6}$ etc. t gives 0.00915 and 0.0183. Allow B1 .
	Use correct formula, or equivalent, with $h = \frac{1}{12}\pi$ and y-values	M1	Must be convinced they have considered 3 values for y for M1
	Obtain 0.378	A1	
	Total:	3	
(ii)	State or imply $\pi \int (\sec^2 2x - 1) dx$	В1	
	Integrate to obtain $k_1 \tan 2x + k_2 x$, any non-zero constants including π or not	M1	
	Obtain $\frac{1}{2} \tan 2x - x$ or $\pi(\frac{1}{2} \tan 2x - x)$	A1	
	Obtain $\pi(\frac{1}{2}\sqrt{3} - \frac{1}{6}\pi)$ or equivalent	A1	
	Total:	4	

171. 9709_s17_MS_22 Q: 7

	Answer	Mark	Partial Marks
(a)	Obtain $\int (2\cos^2\theta - \cos\theta - 3)d\theta$	B1	
	Attempt use of identity to obtain integrand involving $\cos 2\theta$ and $\cos \theta$	M1	
	Integrate to obtain form $k_1 \sin 2\theta + k_2 \sin \theta + k_3 \theta$ for non-zero constants	M1	
	Obtain $\frac{1}{2}\sin 2\theta - \sin \theta - 2\theta + c$	A1	
	Total:	4	
(b)(i)	Integrate to obtain form $k_1 \ln(2x+1) + k_2 \ln(x)$ or $k_1 \ln(2x+1) + k_2 \ln(2x)$	M1	
	Obtain $2\ln(2x+1) + \frac{1}{2}\ln x$ or $2\ln(2x+1) + \frac{1}{2}\ln(2x)$	A1	
	Total:	2	
(b)(ii)	Use relevant logarithm power law for expression obtained from application of limits	M1	
	Use relevant logarithm addition / subtraction laws	M1	O.
	Obtain ln18	A1	
	Total:	3	

172. $9709 w17 MS_21 Q: 4$

	Answer	Mark	Partial Marks
(a)	Obtain integrand of form $a \sec^2 \theta + b$	M1	
	Obtain correct $5\sec^2\theta - 1$	A1	
	Integrate to obtain form $a \tan \theta + b\theta$	M1	
	Obtain $5 \tan \theta - \theta + c$	A1	
		4	
(b)	Obtain integral of form $k \ln(3x+1)$	*M1	
	Apply limits and obtain $\frac{2}{3}\ln(3a+1) = \ln 16$	A1	
**	Obtain equation with no presence of ln	DM1	
	Obtain 21	A1	
		4	

173. $9709 w17 MS_22 Q: 6$

	Answer	Mark	Partial Marks
(a)	Obtain $2-2\cos 2x$ as part of integrand	B1	
	Obtain $3\sin 2x$ as part of integrand	B1	Allow second B1 for writing
	Integrate to obtain form $k_1x + k_2 \sin 2x + k_3 \cos 2x$	M1	$\int 6\sin x \cos x dx = 6\left(\frac{1}{2}\sin^2 x\right), \mathbf{M1}$
			may then be implied by subsequent work
	Obtain $2x - \sin 2x - \frac{3}{2}\cos 2x$ or	A1	
	$2x - \sin 2x + 3\sin^2 x$		
	Apply limits to obtain $\frac{1}{2}\pi + \frac{1}{2}$	A1	0.
		5	
(b)	Integrate to obtain $2\ln(3x+2)$	B1	Allow $\frac{6}{3}\ln(3x+2)$ for B1
	Use at least one relevant logarithm property	*M1	
	Obtain $\frac{3a+2}{2} = 7$ or $\frac{(3a+2)^2}{4} = 49$ or	A1	
	equivalent without ln		
	Solve relevant equation to find <i>a</i>	DM1	Dep on *M1, allow for
			$49 = (3a+2)^2$ OE or correct
			working involving $(3a+2)$
	Obtain $a = 4$ only	A1	
	00	5	

174. 9709 m 16 MS 22 Q: 5Obtain integral of form ke^{2x+1} Obtain correct $3e^{2x+1}$ Apply both limits correctly and rearrange at least to $e^{2a+1} = \dots$ Use logarithms correctly to find aObtain 1.097

M1

[5]

[5]

175. $9709 m16 MS_{22}$ Q: 8

(i)	Stat	$\frac{\cos x}{\sin x}$	B1	
	Sim	plify to confirm $2\cos^2 x$	B1	[2]
(ii)	(a)	Use $\cos 2x = 2\cos^2 x - 1$	B1	
		Express in terms of $\cos x$	M1	
		Obtain $16\cos^2 x + 3$ or equivalent	A1	
		State 3, following their expression of form $a\cos^2 x + b$	A1	[4]
	(b)	Obtain integrand as $\frac{1}{2}\sec^2 2x$	B1	
		Integrate to obtain form k tan 2x	M1*	
		Obtain correct $\frac{1}{4} \tan 2x$	A1	
		Apply limits correctly	dep M1*	

176. 9709 s16 MS 21 Q: 7

Obtain $\frac{1}{4}\sqrt{3} - \frac{1}{4}$ or exact equivalent

(a) Rewrite integrand as
$$\sec^2 2x + \cos^2 2x$$
B1Express $\cos^2 2x$ in form $k_1 + k_2 \cos 4x$ M1State correct $\frac{1}{2} + \frac{1}{2} \cos 4x$ A1Integrate to obtain at least terms involving $\tan 2x$ and $\sin 4x$ M1Obtain $\frac{1}{2} \tan 2x + \frac{1}{2}x + \frac{1}{8} \sin 4x$, condoning absence of $+c$ A1

(b) Integrate to obtain $2x + 2\ln(3x - 2)$ B1

Show correct use of $p \ln k = \ln k^p$ law at least once, must be using $\ln(3x - 2)$ M1

Show correct use of $\ln m - \ln n = \ln \frac{m}{n}$ law, must be using $\ln(3x - 2)$ M1

Use or imply $20 = \ln(e^{20})$ B1

Obtain $\ln(16e^{20})$ A1 [5]

 $177.\ 9709_s16_MS_22\ Q\hbox{:}\ 6$

(a)	Obtain integrand $2e^{-2x} + \frac{1}{2}e^{-x}$	B1	
	Obtain integral of form $k_1 e^{-2x} + k_2 e^{-x}$	M1	
	Obtain answer $-e^{-2x} - \frac{1}{2}e^{-x}$, condoning absence of $+c$	A1	[3]
(b)	Integrate to obtain $\frac{1}{2}\ln(2x+5)$	B1	
	Show correct use of $p \ln k = \ln k^p$ law at least once	M1	
	Show correct use of $\ln m - \ln n = \ln \frac{m}{n}$ law	M1	
	Obtain $\ln \frac{5}{3}$	A1	[4]
(c)	State or imply correct ordinates log 2, log 5, log 8 or decimal equivalents	B1	
	Use correct formula, or equivalent, correctly with $h = 3$ and 3 ordinates Obtain answer 3.9 with no errors seen	M1 A1	[3]
	Obtain answer 3.7 with no cirois seen	21	$\lceil 2 \rceil$

 $178.\ 9709_w16_MS_21\ Q{:}\ 5$

(i)	Use $\cos 2x = 2\cos^2 x - 1$ and attempt factorisation of numerator Obtain $(2\cos x + 1)(\cos x + 4)$ Confirm given result $2\cos x + 1$	M1 A1 A1	[3]
(ii)	Express integrand as $2\cos 2x + 1$ Integrate to obtain $\sin 2x + x$ Apply limits correctly to integral of form $k_1 \sin 2x + k_2 x$ Obtain 2π	B1 B1 M1 A1	[4]

 $179.\ 9709_w16_MS_22\ Q:\ 3$

(i)	Obtain integral of form $k_1e^{\frac{1}{2}x} + k_2x$	M1		Allow $k_1 = 4$
	Obtain correct $8e^{\frac{1}{2}x} + 3x$ oe	A1		
	Use limits correctly to confirm $8e-2$	A1	[3]	
(ii)	Draw increasing curve in first quadrant Draw more or less accurate sketch with correct curvature, gradient at $x = 0$ must be >0	M1	[2]	If incorrect y intercept used then M1 A0 Allow if no intercept stated
(iii)	State more and refer to top(s) of trapezium(s) above curve	B1	[1]	Can be shown using a diagram. Reference to a trapezium must be made

180. 9709_w16_MS_22 Q: 6

(2)	H 20 2 20 1 : 11 : 1	D4		
(i)	Use $\cos 2\theta = 2\cos^2 \theta - 1$ appropriately twice	B1		Alternative method
				$\frac{1-2\sin^2\theta}{2\cos^2\theta} = \frac{1}{2}\sec^2\theta - \tan^2\theta \text{ or}$
				$\frac{1}{2\cos^2\theta} - \tan^2\theta \qquad B1$
	Simplify to confirm $1 - \frac{1}{2} \sec^2 \theta$	B1		then as for 2nd B1
			[2]	
(ii)	Use $\sec^2 \alpha = 1 + \tan^2 \alpha$	B1		
	Obtain equation $\tan^2 \alpha + 10 \tan \alpha + 25 = 0$ or			
	equivalent	B1		
	Attempt solution of 3-term quadratic equation for			
	$\tan \alpha$ and use correct process for finding value of			
	α from negative value of $\tan \alpha$	M1		If quadratic is incorrect, need to see evidence of attempt to solve as required to obtain M1
				of attempt to solve as required to obtain Wi
				(1013π)
	Obtain 1.77	A1		Allow better or in terms of $\pi \left(\frac{1013\pi}{1800} \right)$
				(1000)
			[4]	
(iii)	State or imply integrand $1 - \frac{1}{2}\sec^2\frac{1}{2}x$	B1		*
(111)	State of imply integrand 1 2 see 2 x			
	Obtain integral of form $k_1 x - k_2 \tan \frac{1}{2} x$	M1	~	
		0.		
	Obtain correct $x - \tan \frac{1}{2}x$	A1		
	Apply limits correctly to obtain $\pi - 2$	A1	[4]	
			l r . 1	

181. 9709_w16_MS_23 Q: **3**

(i)	Rewrite integrand as $\sec^2 4x - 1$ Integrate to obtain $\frac{1}{4} \tan 4x - x$, condoning absence of $+c$	B1 B1	[2]
(ii)	Integrate to obtain $2\sin 2x - 2\cos 3x$ Apply limits correctly to integral of form $k_1 \sin 2x + k_2 \cos 3x$ Obtain $3 - \sqrt{2}$ or exact equivalent	B1 M1 A1	[3]

182. 9709 w16 MS 23 Q: 5

(i)	State or imply correct ordinates $\sqrt{2}$, $\sqrt{1+e}$, $\sqrt{1+e^2}$ or decimal equivalents Use correct formula, or equivalent, correctly with $h=3$ and three ordinates Obtain answer 12.25 with no errors seen	B1 M1 A1	[3]
(ii)	Refer to top of each trapezium being above curve or equivalent	B1	[1]
(iii)	State or imply volume is $\int \pi (1 + e^{\frac{1}{3}x}) dx$	B1	
	Integrate to obtain form $k_1x + k_2e^{\frac{1}{2}x}$ with or without π	M1	
	Obtain correct $\pi(x+3e^{\frac{1}{3}x})$ or $x+3e^{\frac{1}{3}x}$	A1	
	Obtain $\pi(3+3e^2)$ or exact equivalent	A1	[4]

183. 9709 s15 MS 21 Q: 6 (i) State or imply $\csc 2\theta = \frac{1}{\sin 2\theta}$ Express left-hand side in terms of $\sin \theta$ and $\cos \theta$ M1 Obtain given answer $\sec^2 \theta$ correctly **A**1 [3] (ii) (a) State or imply $\cos \theta = \frac{1}{\sqrt{5}}$ or $\tan \theta = 2$ at least В1 Obtain 1.11 or awrt 1.11, allow 0.353π В1 Obtain 2.03 or awrt 2.03 , allow 0.648π and no other values between 0 and π В1 [3] **(b)** State integrand as $\sec^2 2x$ В1 Integrate to obtain expression of form $k \tan mx$ M1 Obtain correct $\frac{1}{2} \tan 2x$ **A**1 Obtain $\frac{1}{2}\sqrt{3}$ or exact equivalent [4] A1 184. 9709_s15_MS_22 Q: 4 (i) Differentiate to obtain $e^x - 8e^{-2x}$ В1 Use correct process to solve equation of form $ae^x + be^{-2x} = 0$ M1Confirm given answer ln 2 correctly A1 [3] (ii) Integrate to obtain expression of form $pe^x + qe^{-2x}$ M1 Obtain correct $e^x - 2e^{-2x}$ **A**1 Apply both limits correctly M1 depM Confirm given answer $\frac{3}{2}$ A1 [4]

185. 9709 s15 MS 22 Q: 6

(i)	Solve three-term quadratic equation for $\sin x$	M1	
	Obtain at least $\sin x = -\frac{1}{2}$ and no errors seen	A1	
	Obtain $x = \frac{7}{6}\pi$	A1	[3]

(ii) State
$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$
 B1

Obtain given $5 + 8\sin x - 2\cos 2x$ with necessary detail seen

Integrate to obtain expression of form $ax + b\cos x + c\sin 2x$

Obtain correct $5x - 8\cos x - \sin 2x$

Apply limits 0 and their x-value correctly

Obtain $\frac{35}{6}\pi + \frac{7}{2}\sqrt{3} + 8$ or exact equivalent

A1 [6]

186. 9709 w15 MS 21 Q: 5

(a) Use
$$\tan^2 x = \sec^2 x - 1$$

Obtain integral of form $p \tan x + qx + r \cos 2x$
Obtain $\tan x - x - \frac{1}{2} \cos 2x + c$

B1
M1

A1 [3]

187. 9709 w15 MS 22 Q: 7

(i) Express
$$\cos^2 x$$
 in form $k_1 + k_2 \cos 2x$ M1

Obtain correct $\frac{1}{2} + \frac{1}{2} \cos 2x$ A1

Rewrite second term as $\sec^2 x$ B1

Integrate to obtain at least terms $k_3 \sin 2x$ and $k_4 \tan x$ M1

Obtain $\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x$ A1

Confirm given result $\frac{1}{6}\pi + \frac{9}{8}\sqrt{3}$ A1 [6]

(ii) State volume is
$$\pi \int (\cos x + \frac{1}{\cos x})^2$$
 (π maybe implied by later appearance)

Expand to obtain $\pi \int (\cos^2 x + \frac{1}{\cos^2 x} + 2) dx$ or $\int (\cos^2 x + \frac{1}{\cos^2 x} + 2) dx$

B1

Integrate integrand involving three terms (in part using part (i) or otherwise i.e. $k_3 \sin 2x + k_4 \tan x + k_5 x$)

Obtain $\frac{5}{6}\pi^2 + \frac{9}{8}\sqrt{3}\pi$ or exact equivalent

A1 [4]

 $188.\ 9709_w15_MS_23\ Q:\ 1$

Integrate to obtain $k \ln(2x+5)$	M1	
Obtain correct $\frac{3}{2}\ln(2x+5)$	A1	
Apply limits and use logarithm law for $\ln a - \ln b$	M1	
Use logarithm power law	M 1	
Obtain ln125	A1 [5]	

 $189.\ 9709_w20_MS_21\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(a)	Use iteration correctly at least once	M1	Need to see 3 values including the starting values
	Obtain final answer 1.817	A1	Answer required to exactly 4 significant figures
	Show sufficient iterations to 6 significant figures to justify answer or show sign change in interval [1.8165, 1.8175]	A1	
		3	.0,
(b)	State equation $x = \frac{6 + 8x}{8 + x^2}$ or equivalent using α	B1	10)
	Obtain ₹6 or exact equivalent	В1	. 0
		2	

190. $9709_{w20}_{MS_22}$ Q: 7

	Answer	Mark	Partial Marks
(a)	Substitute $x = 3$ and attempt evaluation	M1	
	Obtain 0 and confirm factor $x-3$	A1	AG
		3	
(b)	Divide quartic expression by $x-3$ at least as far as $x^3 + kx^2$	M1	
	Obtain $x^3 - 2x^2$	A1	
	Obtain $x^3 - 2x^2 + 5$	A1	With no errors seen
	Attempt rearrangement of their cubic expression to $x =$	M1	Or <i>a</i> =
	Confirm $a = -\sqrt{\frac{5}{2-a}}$	A1	AG
	**	5	
(c)	Use iteration process correctly at least once	M1	Need to see 3 values including their starting value.
	Obtain final answer -1.24	A1	Answer required to exactly 3 significant figures.
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [-1.245, -1.235]	A1	
		3	

191. 9709_m19_MS_22 Q: 5

	Answer	Mark	Partial Marks
(i)	Attempt rearrangement of $\frac{e^{2x}}{4x+1} = 10$ to $x =$ involving ln	M1	
	$Confirm \ x = \frac{1}{2}\ln(40x + 10)$	A1	Answer given; necessary detail needed
		2	
(ii)	Use iteration process correctly at least once	M1	
	Obtain final answer 2.316	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval [2.3155, 2.3165]	A1	
		3	
(iii)	Use quotient rule (or product rule) to find derivative	M1	
	Obtain $\frac{2e^{2x}(4x+1)-4e^{2x}}{(4x+1)^2}$ or equivalent	A1	
	$(4x+1)^2 \qquad \qquad \text{or equivalent}$		
	Substitute answer from part (ii) (or more accurate value) into attempt at first derivative	M1	
	Obtain 16.1	A1	
		4	

 $192.\ 9709_s19_MS_21\ Q:\ 6$

	Answer	Mark	Partial Marks
(i)	Use quotient rule (or product rule) to differentiate	M1	Penalise missing brackets by withholding the A mark unless recovered later
	Obtain $\frac{dy}{dx} = \frac{3x^2(2-5x)-(-5)(8+x^3)}{(2-5x)^2}$ or equivalent	A1	
	State or imply curve crosses x-axis when $x = -2$	B1	
	Substitute -2 to obtain 1	A1	
		4	
(ii)	Equate numerator of first derivative to zero and rearrange as far as $kx^3 =$ or equivalent	M1	
	Confirm given result $x = \sqrt{0.6x + 4x^{-1}}$ AG	A1	Condone in this part error(s) in denominator of derivative
	Y	2	
(iii)	Use iterative process correctly at least once	M1	
••	Obtain final answer 1.81	A1	
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [1.805, 1.815]	A1	
		3	

 $193.\ 9709_s19_MS_22\ Q{:}\ 6$

	Answer	Mark	Partial Marks
(i)	Equate $4t^2e^{-t}$ to 1, rearrange to $t^2 =$ and hence $t =$	M1	Allow M1 for $t = \sqrt{\frac{1}{4}e^{-t}}$
	Confirm $t = \frac{1}{2}e^{\frac{1}{4}t}$ with necessary detail needed as answer is given	A1	
		2	
(ii)	Use iterative process correctly at least once	M1	
	Obtain final answer $t = 0.715$	A1	
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [0.7145, 0.7155]	A1	SC: M1A1 from iterations to 4sf resulting in 0.71
		3	
(iii)	Obtain $\frac{dx}{dt} = 3 + 12e^{-2t}$	B1	
	Use product rule to find $\frac{dy}{dt}$	M1	
	Obtain $8te^{-t} - 4t^2e^{-t}$	A1	
	Divide correctly to obtain $\frac{dy}{dx}$	M1	29
	Substitute value from part (ii) to obtain 0.31	A1	Allow greater accuracy
		5	

 $194.\ 9709_w19_MS_21\ Q{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Integrate to obtain form $x^3 + k_1 \sin 2x + k_2 \cos x$	*M1	
	Obtain correct $x^3 + 2\sin 2x + \cos x$	A1	
	Apply limits correctly and equate to 2	DM1	
	Confirm given result	A1	AG; necessary detail needed
		4	
(ii)	Consider sign of $a - \sqrt[3]{3 - 2\sin 2a - \cos a}$ or equivalent for 0.5 and 0.75	M1	
	Obtain -0.26 and 0.10 or equivalents and justify conclusion	A1	AG; necessary detail needed
		2	
(iii)	Use iterative process correctly at least once	M1	Need to see a correct x_3 , may be implied by $x_1 = 0.5$ so $x_3 = 0.65256$ or $x_1 = 0.75$ so $x_3 = 0.64897$ OE Must be working with radians
	Obtain final answer 0.651	A1	
	Show sufficient iterations to 5sf to justify answer or show a sign change in the interval [0.6505, 0.6515]	A1	
		3	

195. 9709_w19_MS_22 Q: 4

	Answer	Mark	Partial Marks
(i)	Use iteration correctly at least once	M1	Must see correct attempt at x_3
	Obtain final answer 1.359	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval [1.3585, 1.3595]	A1	Answer required to exactly 4 sf Must see to at least x_5
		3	
(ii)	Form correct equation in x (or α)	B1	$x = \frac{x}{\ln 2x} \text{ OE}$
	Obtain ½e	B1	
		2	

 $196.\ 9709_m18_MS_22\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Integrate to obtain $-2e^{-2x}$	B1	
	Apply limits correctly to integral of form ke ^{-2x}	M1	10.
	Obtain $-2e^{-4a} + 2e^{2a} = 25$	A1	
	Rearrange to confirm $a = \frac{1}{2} \ln(12.5 + e^{-4a})$	A1	AG; necessary detail needed
		4	
(ii)	Consider sign of $a - \frac{1}{2}\ln(12.5 + e^{-4a})$ or equivalent for 1.0 and 1.5	M1	
	Obtain -0.26 and 0.24 or equivalent and justify conclusion	A1	AG; necessary detail needed
		2	
(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.263	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval (1.2625, 1.2635)	A1	
	100	3	

197. 9709_s18_MS_21 Q: 4

	Answer	Mark	Partial Marks
(i)	Use quotient rule or equivalent	M1	Obtaining two terms in numerator and $(2x+1)^2$ in denominator for a quotient
	Obtain correct $\frac{\frac{5}{x}(2x+1)-10\ln x}{(2x+1)^2}$ or equivalent, or $\frac{5}{x}(2x+1)^{-1}-10\ln x(2x+1)^{-2}$ or equivalent	A1	Obtaining one term with $(2x+1)^{-1}$ oe and a second term with $(2x+1)^{-2}$ oe for a product Condone poor use of brackets if recovered later
	Substitute $x = 1$ to obtain $\frac{15}{9}$ or $\frac{5}{3}$ or equivalent, www	A1	
		3	
(ii)	Equate numerator to zero and attempt relevant arrangement	M1	For M1, need to see at least one line of working after either $10 + \frac{5}{x} - 10 \ln x = 0$ or their numerator (which must have at least 2 terms, one involving $\ln x$) = 0
	$Confirm \ x = \frac{x + 0.5}{\ln x}$	A1	AG; necessary detail needed
		2	
(iii)	Use iteration process correctly at least once	M1	20
	Obtain final answer 3.181	A1	*O
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (3.1805, 3.1815)	A1	
		3	0)

 $198.\ 9709_s18_MS_22\ Q{:}\ 6$

	Answer	Mark	Partial Marks
(i)	Rewrite integrand as $1 + 2e^{\frac{1}{2}x} + e^x$	B1	
	Integrate to obtain form $x + k_1 e^{\frac{1}{2}x} + k_2 e^x$	M1	
	Obtain $x + 4e^{\frac{1}{2}x} + e^x$	A1	
	Use limits to obtain $a + 4e^{\frac{1}{2}a} + e^a - 5 = 10$	A1	
	Rearrange as far as $e^{\frac{1}{2}a} =$ including use of $4e^{\frac{1}{2}a} + e^a = e^{\frac{1}{2}a}(4 + e^{\frac{1}{2}a})$	M1	
	Confirm $a = 2\ln\left(\frac{15 - a}{4 + e^{\frac{1}{2}a}}\right)$	A1	AG; necessary detail needed
		6	
(ii)	Consider sign of $a - 2 \ln \left(\frac{15 - a}{4 + e^{\frac{1}{2}a}} \right)$ for 1.5 and 1.6 or equivalent	M1	
	Obtain -0.08 and 0.06 or equivalents and justify conclusion	A1	
		2	
(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.56	A1	
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval (1.555, 1.565)	A1	
		3	

199. 9709_w18_MS_21 Q: 4

	Answer	Mark	Partial Marks
(i)	Substitute –2 and simplify	M1	
	Obtain 16-16+8+24-32 and hence zero and conclude	A1	AG; necessary detail needed
		2	
(ii)	Attempt division by $x + 2$ to reach at least partial quotient $x^3 + kx$ or use of identity or inspection	M1	
	Obtain $x^3 + 2x - 16$	A1	
	Equate to zero and obtain $x = \sqrt[3]{16 - 2x}$	A1	
		3	
(iii)	Use iteration process correctly at least once	M1	
	Obtain final answer 2.256	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval (2.2555, 2.2565)	A1	0.
		3	40

 $200.\ 9709_w18_MS_22\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Rearrange at least as far as $2x = \ln()$	M1	Allow if in terms of p , need to see y equated to 0
	Obtain $x = \frac{1}{2} \ln(1.6x^2 + 4)$	A1	AG; necessary detail needed
		2	
(ii)	<u>Either</u>		
	Consider sign of $x - \frac{1}{2}\ln(1.6x^2 + 4)$ for 0.75 and 0.85 or equivalent	M1	Need to see substitution of numbers
	Obtain -0.04 and 0.03 or equivalents and justify conclusion	A1	AG; necessary detail needed, change of sign or equivalent must be mentioned
	<u>Or</u>		
	Consider sign of $5e^{2x} - 8x^2 - 20$ for 0.75 and 0.85	M1	Need to see substitution of numbers
	Obtain -2.09 and 1.58 or equivalents and justify conclusion	A1	AG; necessary detail needed, change of sign or equivalent must be mentioned
	Y	2	
(iii)	Use iteration process correctly at least once	M1	Starting with value such that iterations converge to correct values
	Obtain final value 0.80956	A1	Must be 5sf for the final answer
	Show sufficient iterations to justify value or show sign change in interval (0.809555, 0.809565)	A1	
		3	
(iv)	Obtain first derivative $10e^{2x} - 16x$	B1	
	Substitute value from iteration to find gradient, must be in the form $pe^{2x} + qx$	M1	
	Obtain 37.5	A1	Or greater accuracy, allow awrt 37.5 from use of $x = 0.8096$, 0.80955 oe
		3	

 $201.\ 9709_m17_MS_22\ Q\!{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Integrate to obtain form $k_1x + k_2x^2 + k_3e^{3x}$ for non-zero constants	M1	
	Obtain $x + x^2 + e^{3x}$	A1	
	Apply both limits to obtain $a + a^2 + e^{3a} - 1 = 250$ or equivalent	A1	
	Apply correct process to reach form without e involved	M1	
	Confirm given $a = \frac{1}{3}\ln(251 - a - a^2)$	A1	
	Total:	5	
(ii)	Use iterative process correctly at least once	M1	.0,
	Obtain final answer 1.835	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8345, 1.8355)	A1	
	Total:	3	

 $202.\ 9709_s17_MS_21\ Q:\ 4$

	Answer	Mark	Partial Marks
(i)	Use iteration correctly at least once	M1	
	Obtain final answer 2.08	A1	
	Show sufficient iterations to 4 dp to justify answer or show sign change in interval (2.075, 2.085)	A1	
	Total:	3	
(ii)	State or clearly imply equation $x = \frac{2x^2 + x + 9}{(x+1)^2}$ or same equation using α	B1	
	Carry out relevant simplification	M1	
	Obtain ₹9	A1	
		3	

0.

 $203.\ 9709_s17_MS_22\ Q:\ 3$

	Answer	Mark	Partial Marks
(i)	Draw sketch of $y = x^3$	*B1	May be implied by part graph in first quadrant
	Draw straight line with negative gradient crossing positive y-axis and indicate one intersection	DB1	dep *B
	Total:	2	
(ii)	Use iterative formula correctly at least once	M1	
	Obtain final answer 1.926	A1	
	Show sufficient iterations to justify 4 sf or show sign change in interval (1.9255,1.9265)	A1	
	Total:	3	

 $204.\ 9709_w17_MS_21\ Q:\ 7$

	Amouron	Maule	
	Answer	Mark	Partial Marks
(i)	Differentiate to obtain form $k_1x + k_2 + k_3 \sin \frac{1}{2}x$	*M1	
	Obtain correct $2x + 3 - \frac{5}{2}\sin{\frac{1}{2}x}$ and deduce or imply gradient at <i>P</i> is 3	A1	
	Equate first derivative to their -3 and rearrange	DM1	
	Obtain $x = \frac{5}{4}\sin\frac{1}{2}x - 3$	A1	
		4	
(ii)	Consider sign of their $2x + 6 - \frac{5}{2}\sin{\frac{1}{2}x}$ at -4.5 and -4.0 or equivalent	M1	
	Complete argument correctly for correct expression with appropriate calculations	A1	
		2	
(iii)	Use iteration formula correctly at least once	M1	
**	Obtain final answer -4.11	A1	
	Show sufficient iterations to justify accuracy to 3 sf or show sign change in interval (-4.115, -4.105)	A1	
		3	

 $205.\ 9709_w17_MS_22\ Q\hbox{:}\ 5$

	Answer	Mark	Partial Marks
(i)	Obtain derivative of the form ke^{-2x}	*M1	Condone $k = 4$ for M1
	State or imply gradient of curve at <i>P</i> is –8	A1	
	Form equation of straight line through (0,9) with negative gradient	*DM1	dep on *M
	Obtain $y = -8x + 9$ or equivalent	A1	
	Equate equation of curve and equation of straight line	DM1	dep on both *M
	Rearrange to confirm $x = \frac{9}{8} - \frac{1}{2}e^{-2x}$	A1	
		6	
(ii)	Use iterative process correctly at least once	M1	70
	Obtain final answer 1.07	A1	0,
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval (1.065, 1.075)	Al	
		6	

 $206.9709 m16 MS_{22} Q: 4$

, , , , , , ,	70_M10_M3_22		
(i)	Use the iterative formula correctly at least once	M 1	
	Obtain final answer 1.516	A1	
	Show sufficient iterations to justify accuracy to 3 dp or show sign change		
	in interval (1.5155, 1.5165)	B 1	[3]
(ii)	State equation $x = \sqrt{\frac{1}{2}x^2 + 4x^{-3}}$ or equivalent	B1	
	Obtain exact value $\sqrt[5]{8}$ or $8^{0.2}$	B 1	[2]

 $207.\ 9709\ \ s16\ \ MS\ \ 21\ \ Q{:}\ 6$

(i)	Use quotient rule or equivalent	*M1	
	Obtain $\frac{6x(x^2+4)-6x^3}{(x^2+4)^2}$ or equivalent	A1	
	Equate first derivative to $\frac{1}{2}$ and remove algebraic denominators dep on *M1	DM1	
	Obtain $48p = p^4 + 8p^2 + 16$ or $48x = x^4 + 8x^2 + 16$ or equivalent	A1	
	Confirm given result $p = \sqrt{\frac{48p - 16}{p^2 + 8}}$	A1	[5]

(ii) Consider sign of $p - \sqrt{\frac{48p - 16}{p^2 + 8}}$ at 2 and 3 or equivalent

Complete argument correctly with appropriate calculations

A1 [2]

(iii) Carry out iteration process correctly at least once
Obtain final answer 2.728
Show sufficient iterations to justify accuracy to 4 sf or show sign change in interval (2.7275, 2.7285)

B1 [3]

 $208.\ 9709 \ \ s16 \ \ MS \ \ 22 \ \ Q;\ 5$

Show sufficient iterations to justify accuracy to 3 dp or show sign change in

209. 9709_w16_MS_21 Q: 4

interval (3.4115, 3.4125)

(i)*	Integrate to obtain $2e^{2x} + 5x$ Apply limits correctly and equate to 100 Rearrange and apply logarithms correctly to reach $a =$ Confirm given result $a = \frac{1}{2} \ln(50 + e^{-2a} - 5a)$	B1 M1 M1 A1	[4]
(ii)	Use the iterative formula correctly at least once Obtain final answer 1.854 Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval (1.8535, 1.8545)	M1 A1 B1	[3]

B1

[3]

 $210.\ 9709_w16_MS_22\ Q\hbox{:}\ 5$

(i)	Use quotient rule (or product rule) to find first derivative	M1		Quotient: Must have a difference in the numerator and $(x^2 + 1)^2$ in the denominator
	Obtain $\frac{\frac{4}{x}(x^2+1)-8x\ln x}{(x^2+1)^2}$ or equivalent	A1		Product: Must see an application of the chain rule.
	State $\frac{4}{x}(x^2+1) - 8x \ln x = 0$ or equivalent	A1		Condone missing brackets if correct use is implied by correct work later
	Carry out correct process to produce equation without ln, without any incorrect working	M1		
	Confirm $m = e^{0.5(1+m^{-2})}$ or $x = e^{0.5(1+x^{-2})}$	A1	[5]	
(ii)	Use iterative formula correctly at least once	M1		Should not be attempting to use $x_0 = 0$, but if used and 'recovered' then SC M1 A1- usually see $m_1 = 1.6487$
	Obtain final answer 1.895	A1		*0
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8945, 1.8955)	A1	[3]	orline

$211.\ 9709_w16_MS_23\ Q: 1$

(i)	Use the iterative formula correctly at least once Obtain final answer 2.289	M1 A1	
	Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval (2.2885, 2.2895)	B1	[3]
(ii)	State equation $x = \frac{4}{x^2} + \frac{2}{3}x$ or equivalent	B1	
	Obtain exact value $12^{\frac{1}{3}}$ or $\sqrt[3]{12}$	B1	[2]

212. 9709_s15_MS_21 Q: 5

(i)	Obtain integral of form $ke^{\frac{1}{2}x} + mx$	M1		
	Obtain correct $6e^{\frac{1}{2}x} + x$	A1		
	Apply limits and obtain correct $6e^{\frac{1}{2}a} + a - 6$	A1		
	Equate to 10 and introduce natural logarithm correctly	DM1		
	Obtain given answer $a = 2 \ln \left(\frac{16 - a}{6} \right)$ correctly	A1	[5]	
(ii)	Use the iterative formula correctly at least once	M1		
	Obtain final answer 1.732	A1		
	Show sufficient iterations to justify accuracy to 3 d.p. or show sign change			
	in interval (1.7315, 1.7325)	A1	[3]	

213. 9709 s15 MS 22 Q: 5

13. 970	09_s15_MS_22 Q: 5		
(i)	Draw recognisable sketch of $y = 16 - x^4$	B1	
	Draw recognisable sketch of $y = 3x $	B1	
	Indicate in some way the two points of intersection	B1 d	epBB
			[3]
(ii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.804	A1	
	Show sufficient iterations to justify answer or show sign change in the interval (1.8035, 1.8045)	A1	[3]
	interval (1.0033, 1.0043)	Al	[3]
(iii)	State (1.804, 5.412)	B1	
	State (-1.804, 5.412), following their first point	B1√	[2]
14. 970	09_w15_MS_21_Q: 4		
	Make a recognisable sketch of $y = \ln x$	B 1	
	Draw straight line with negative gradient crossing positive y-axis and justify	0	
	one real root	B1	[2]
(ii)	Consider sign of $\ln x + \frac{1}{2}x - 4$ at 4.5 and 5.0 or equivalent	M1	
(11)	2		
	Complete the argument correctly with appropriate calculations	A1	[2]
(iii)		M1	
	Obtain final answer 4.84 Show sufficient iterations to justify accuracy to 2 d.m. or show sign shangs	A1	
	Show sufficient iterations to justify accuracy to 2 d.p. or show sign change in interval (4.835, 4.845)	A1	[3]
			[-]
15. 970	09_w15_MS_22 Q: 2		
(i)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 2.289	A1	
	Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval (2.2885, 2.2895)	A1	[3]
	micival (2.2663, 2.2673)	AI	[2]
(ii)	State $x = 2 + \frac{4}{2}$ or equivalent	B 1	
	$x^2 + 2x + 4$	75.4	F0.7
	Obtain ³ √12	B1	[2]
 16. 970	09 w15 MS 23 Q: 5		
	Integrate to obtain $e^{3x} + 5e^x$	B 1	
(1)	Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$	ы М1	
	Obtain $e^{3a} + 5e^{a} = 106$ or similarly simplified equivalent		
	Rearrange and introduce logarithms	A1 M1	
	Confirm given answer $a = \frac{1}{3} \ln(106 - 5e^a)$	A1	[5]
(22)			[-]
(11)	Use the iterative formula correctly at least once Obtain final answer 1.477	M1 A1	
	Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval		

